Jonathan Latham
Science Writings
RSS
  • Contact

Regulators Discover a Hidden Viral Gene in Commercial GMO Crops

October 21, 2015 By jrl in Feature Articles No Comments

by Jonathan Latham and Allison Wilson

How should a regulatory agency announce they have discovered something potentially very important about the safety of products they have been approving for over twenty years?

In the course of analysis to identify potential allergens in GMO crops, the European Food Safety Authority (EFSA) has belatedly discovered that the most common genetic regulatory sequence in commercial GMOs also encodes a significant fragment of a viral gene (Podevin and du Jardin 2012). This finding has serious ramifications for crop biotechnology and its regulation, but possibly even greater ones for consumers and farmers. This is because there are clear indications that this viral gene (called Gene VI) might not be safe for human consumption. It also may disturb the normal functioning of crops, including their natural pest resistance.

Cauliflower Mosaic Virus

What Podevin and du Jardin discovered is that of the 86 different transgenic events (unique insertions of foreign DNA) commercialized to-date in the United States 54 contain portions of Gene VI within them. They include any with a widely used gene regulatory sequence called the CaMV 35S promoter (from the cauliflower mosaic virus; CaMV). Among the affected transgenic events are some of the most widely grown GMOs, including Roundup Ready soybeans (40-3-2) and MON810 maize. They include the controversial NK603 maize recently reported as causing tumors in rats (Seralini et al. 2012).

The researchers themselves concluded that the presence of segments of Gene VI “might result in unintended phenotypic changes”. They reached this conclusion because similar fragments of Gene VI have already been shown to be active on their own (e.g. De Tapia et al. 1993). In other words, the EFSA researchers were unable to rule out a hazard to public health or the environment.

In general, viral genes expressed in plants raise both agronomic and human health concerns (reviewed in Latham and Wilson 2008). This is because many viral genes function to disable their host in order to facilitate pathogen invasion. Often, this is achieved by incapacitating specific anti-pathogen defenses. Incorporating such genes could clearly lead to undesirable and unexpected outcomes in agriculture. Furthermore, viruses that infect plants are often not that different from viruses that infect humans. For example, sometimes the genes of human and plant viruses are interchangeable, while on other occasions inserting plant viral fragments as transgenes has caused the genetically altered plant to become susceptible to an animal virus (Dasgupta et al. 2001). Thus, in various ways, inserting viral genes accidentally into crop plants and the food supply confers a significant potential for harm.

The Choices for Regulators

The original discovery by Podevin and du Jardin (at EFSA) of Gene VI in commercial GMO crops must have presented regulators with sharply divergent procedural alternatives. They could 1) recall all CaMV Gene VI-containing crops (in Europe that would mean revoking importation and planting approvals) or, 2) undertake a retrospective risk assessment of the CaMV promoter and its Gene VI sequences and hope to give it a clean bill of health.

It is easy to see the attraction for EFSA of option two. Recall would be a massive political and financial decision and would also be a huge embarrassment to the regulators themselves. It would leave very few GMO crops on the market and might even mean the end of crop biotechnology.

Regulators, in principle at least, also have a third option to gauge the seriousness of any potential GMO hazard. GMO monitoring, which is required by EU regulations, ought to allow them to find out if deaths, illnesses, or crop failures have been reported by farmers or health officials and can be correlated with the Gene VI sequence. Unfortunately, this particular avenue of enquiry is a scientific dead end. Not one country has carried through on promises to officially and scientifically monitor any hazardous consequences of GMOs (1).

Unsurprisingly, EFSA chose option two. However, their investigation resulted only in the vague and unreassuring conclusion that Gene VI “might result in unintended phenotypic changes” (Podevin and du Jardin 2012). This means literally, that changes of an unknown number, nature, or magnitude may (or may not) occur. It falls well short of the solid scientific reassurance of public safety needed to explain why EFSA has not ordered a recall.

Can the presence of a fragment of virus DNA really be that significant? Below is an independent analysis of Gene VI and its known properties and their safety implications. This analysis clearly illustrates the regulators’ dilemma.

The Many Functions of Gene VI

Gene VI, like most plant viral genes, produces a protein that is multifunctional. It has four (so far) known roles in the viral infection cycle. The first is to participate in the assembly of virus particles. There is no current data to suggest this function has any implications for biosafety. The second known function is to suppress anti-pathogen defenses by inhibiting a general cellular system called RNA silencing (Haas et al. 2008). Thirdly, Gene VI has the highly unusual function of transactivating (described below) the long RNA (the 35S RNA) produced by CaMV (Park et al. 2001). Fourthly, unconnected to these other mechanisms, Gene VI has very recently been shown to make plants highly susceptible to a bacterial pathogen (Love et al. 2012). Gene VI does this by interfering with a common anti-pathogen defense mechanism possessed by plants. These latter three functions of Gene VI (and their risk implications) are explained further below:

1) Gene VI Is an Inhibitor of RNA Silencing

RNA silencing is a mechanism for the control of gene expression at the level of RNA abundance (Bartel 2004). It is also an important antiviral defense mechanism in both plants and animals, and therefore most viruses have evolved genes (like Gene VI) that disable it (Dunoyer and Voinnet 2006).

Cauliflower mosaic virus genome

This attribute of Gene VI raises two obvious biosafety concerns: 1) Gene VI will lead to aberrant gene expression in GMO crop plants, with unknown consequences and, 2) Gene VI will interfere with the ability of plants to defend themselves against viral pathogens. There are numerous experiments showing that, in general, viral proteins that disable gene silencing enhance infection by a wide spectrum of viruses (Latham and Wilson 2008).

2) Gene VI Is a Unique Transactivator of Gene Expression

Multicellular organisms make proteins by a mechanism in which only one protein is produced by each passage of a ribosome along a messenger RNA (mRNA). Once that protein is completed the ribosome dissociates from the mRNA. However, in a CaMV-infected plant cell, or as a transgene, Gene VI intervenes in this process and directs the ribosome to get back on an mRNA (reinitiate) and produce the next protein in line on the mRNA, if there is one. This property of Gene VI enables Cauliflower Mosaic Virus to produce multiple proteins from a single long RNA (the 35S RNA). Importantly, this function of Gene VI (which is called transactivation) is not limited to the 35S RNA. Gene VI seems able to transactivate any cellular mRNA (Futterer and Hohn 1991; Ryabova et al. 2002). There are likely to be thousands of mRNA molecules having a short or long protein coding sequence following the primary one. These secondary coding sequences could be expressed in cells where Gene VI is expressed. The result will presumably be production of numerous random proteins within cells. The biosafety implications of this are difficult to assess. These proteins could be allergens, plant or human toxins, or they could be harmless. Moreover, the answer will differ for each commercial crop species into which Gene VI has been inserted.

3) Gene VI Interferes with Host Defenses

A very recent finding, not known by Podevin and du Jardin, is that Gene VI has a second mechanism by which it interferes with plant anti-pathogen defenses (Love et al. 2012). It is too early to be sure about the mechanistic details, but the result is to make plants carrying Gene VI more susceptible to certain pathogens, and less susceptible to others. Obviously, this could impact farmers, however the discovery of an entirely new function for gene VI while EFSA’s paper was in press, also makes clear that a full appraisal of all the likely effects of Gene VI is not currently achievable.

Is There a Direct Human Toxicity Issue?

When Gene VI is intentionally expressed in transgenic plants, it causes them to become chlorotic (yellow), to have growth deformities, and to have reduced fertility in a dose-dependent manner (Ziljstra et al 1996). Plants expressing Gene VI also show gene expression abnormalities. These results indicate that, not unexpectedly given its known functions, the protein produced by Gene VI is functioning as a toxin and is harmful to plants (Takahashi et al 1989). Since the known targets of Gene VI activity (ribosomes and gene silencing) are also found in human cells, a reasonable concern is that the protein produced by Gene VI might be a human toxin. This is a question that can only be answered by future experiments.

Is Gene VI Protein Produced in GMO Crops?

Given that expression of Gene VI is likely to cause harm, a crucial issue is whether the actual inserted transgene sequences found in commercial GMO crops will produce any functional protein from the fragment of Gene VI present within the CaMV sequence.

There are two aspects to this question. One is the length of Gene VI accidentally introduced by developers. This appears to vary but most of the 54 approved transgenes contain the same 528 base pairs of the CaMV 35S promoter sequence. This corresponds to approximately the final third of Gene VI. Deleted fragments of Gene VI are active when expressed in plant cells and functions of Gene VI are believed to reside in this final third. Therefore, there is clear potential for unintended effects if this fragment is expressed (e.g. De Tapia et al. 1993; Ryabova et al. 2002; Kobayashi and Hohn 2003).

The second aspect of this question is what quantity of Gene VI could be produced in GMO crops? Once again, this can ultimately only be resolved by direct quantitative experiments. Nevertheless, we can theorize that the amount of Gene VI produced will be specific to each independent insertion event. This is because significant Gene VI expression probably would require specific sequences (such as the presence of a gene promoter and an ATG [a protein start codon]) to precede it and so is likely to be heavily dependent on variables such as the details of the inserted transgenic DNA and where in the plant genome the transgene inserted.

Commercial transgenic crop varieties can also contain superfluous copies of the transgene, including those that are incomplete or rearranged (Wilson et al 2006). These could be important additional sources of Gene VI protein. The decision of regulators to allow such multiple and complex insertion events was always highly questionable, but the realization that the CaMV 35S promoter contains Gene VI sequences provides yet another reason to believe that complex insertion events increase the likelihood of a biosafety problem.

Even direct quantitative measurements of Gene VI protein in individual crop authorizations would not fully resolve the scientific questions, however. No-one knows, for example, what quantity, location or timing of protein production would be of significance for risk assessment, and so answers necessary to perform science-based risk assessment are unlikely to emerge soon.

Big Lessons for Biotechnology

It is perhaps the most basic assumption in all of risk assessment that the developer of a new product provides regulators with accurate information about what is being assessed. Perhaps the next most basic assumption is that regulators independently verify this information.  We now know, however, that for over twenty years neither of those simple expectations have been met. Major public universities, biotech multinationals, and government regulators everywhere, seemingly did not appreciate the relatively simple possibility that the DNA constructs they were responsible for encoded a viral gene.

This lapse occurred despite the fact that Gene VI was not truly hidden; the relevant information on the existence of Gene VI has been freely available in the scientific literature since well before the first biotech approval (Franck et al 1980). We ourselves have offered specific warnings that viral sequences could contain unsuspected genes (Latham and Wilson 2008). The inability of risk assessment processes to incorporate longstanding and repeated scientific findings is every bit as worrysome as the failure to intellectually anticipate the possibility of overlapping genes when manipulating viral sequences.

This sense of a generic failure is reinforced by the fact that this is not an isolated event. There exist other examples of commercially approved viral sequences having overlapping genes that were never subjected to risk assessment. These include numerous commercial GMOs containing promoter regions of the closely related virus figwort mosaic virus (FMV) which were not considered by Podevin and du Jardin. Inspection of commercial sequence data shows that the commonly used FMV promoter overlaps its own Gene VI (Richins et al 1987). A third example is the virus-resistant potato NewLeaf Plus (RBMT-22-82). This transgene contains approximately 90% of the P0 gene of potato leaf roll virus. The known function of this gene, whose existence was discovered only after US approval, is to inhibit the anti-pathogen defenses of its host (Pfeffer et al 2002). Fortunately, this potato variety was never actively marketed.

A further key point relates to the biotech industry and their campaign to secure public approval and a permissive regulatory environment. This has led them to repeatedly claim, firstly, that GMO technology is precise and predictable; and secondly, that their own competence and self-interest would prevent them from ever bringing potentially harmful products to the market; and thirdly, to assert that only well studied and fully understood transgenes are commercialized. It is hard to imagine a finding more damaging to these claims than the revelations surrounding Gene VI.

Biotechnology, it is often forgotten, is not just a technology. It is an experiment in the proposition that human institutions can perform adequate risk assessments on novel living organisms. Rather than treat that question as primarily a daunting scientific one, we should for now consider that the primary obstacle will be overcoming the much more mundane trap of human complacency and incompetence. We are not there yet, and therefore this incident will serve to reinforce the demands for GMO labeling in places where it is absent.

What Regulators Should Do Now

This summary of the scientific risk issues shows that a segment of a poorly characterized viral gene never subjected to any risk assessment (until now) was allowed onto the market. This gene is currently present in commercial crops and growing on a large scale. It is also widespread in the food supply.

Even now that EFSA’s own researchers have belatedly considered the risk issues, no one can say whether the public has been harmed, though harm appears a clear scientific possibility. Considered from the perspective of professional and scientific risk assessment, this situation represents a complete and catastrophic system failure.

But the saga of Gene VI is not yet over. There is no certainty that further scientific analysis will resolve the remaining uncertainties, or provide reassurance. Future research may in fact increase the level of concern or uncertainty, and this is a possibility that regulators should weigh heavily in their deliberations.

To return to the original choices before EFSA, these were either to recall all CaMV 35S promoter-containing GMOs, or to perform a retrospective risk assessment. This retrospective risk assessment has now been carried out and the data clearly indicate a potential for significant harm. The only course of action consistent with protecting the public and respecting the science is for EFSA, and other jurisdictions, to order a total recall. This recall should also include GMOs containing the FMV promoter and its own overlapping Gene VI.

Footnotes
1)  EFSA regulators might now be regretting their failure to implement meaningful GMO monitoring. It would be a good question for European politicians to ask EFSA and for the board of EFSA to ask the GMO panel, whose job it is to implement monitoring.

References
Bartel P (2004)  MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell: 116, 281-297.
Dasgupta R , Garcia BH,  Goodman RM (2001) Systemic spread of an RNA insect virus in plants expressing plant viral movement protein genes. Proc. Natl. Acad. Sci. USA 98: 4910-4915.
De Tapia M, Himmelbach A, and Hohn T (1993) Molecular dissection of the cauliflower mosaic virus translation transactivator. EMBO J 12: 3305-14.
Dunoyer P, and  O Voinnet (2006) The complex interplay between plant viruses and host RNA-silencing pathways.  Curr Opinion in Plant Biology 8: 415–423.
Franck A, H Guilley, G Jonard, K Richards and L Hirth (1980) Nucleotide sequence of cauliflower mosaic virus DNA. Cell 2: 285-294.
Futterer J, and T Hohn (1991) Translation of a polycistronic mRNA in presence of the cauliflower mosaic virus transactivator protein. EMBO J. 10: 3887-3896.
Haas G, Azevedo J, Moissiard G, Geldreich A, Himber C, Bureau M, et al. (2008) Nuclear import of CaMV P6 is required for infection and suppression of the RNA silencing factor DRB4. EMBO J 27: 2102-12.
Kobayashi K, and T Hohn (2003) Dissection of Cauliflower Mosaic Virus Transactivator/Viroplasmin Reveals Distinct Essential Functions in Basic Virus Replication. J. Virol. 77: 8577–8583.
Latham JR, and AK Wilson (2008) Transcomplementation and Synergism in Plants: Implications for Viral Transgenes? Molecular Plant Pathology 9: 85-103.
Park H-S, Himmelbach A, Browning KS, Hohn T, and Ryabova LA (2001). A plant viral ‘‘reinitiation’’ factor interacts with the host translational machinery. Cell 106: 723–733.
Pfeffer S, P Dunoyer, F Heim, KE Richards, G Jonard, V Ziegler-Graff (2002) P0 of Beet Western Yellows Virus Is a Suppressor of Posttranscriptional Gene Silencing. J. Virol. 76: 6815–6824.
Podevin N and  du Jardin P (2012) Possible consequences of the overlap between the CaMV 35S promoter regions in plant transformation vectors used and the viral gene VI in transgenic plants. GM Crops and Food 3: 1-5.
Love AJ , C Geri, J Laird, C Carr, BW Yun, GJ Loake et al (2012) Cauliflower mosaic virus Protein P6 Inhibits Signaling Responses to Salicylic Acid and Regulates Innate Immunity. PLoS One. 7(10): e47535.
Richins R, H Scholthof, RJ Shepherd (1987) Sequence of figwort mosaic virus DNA (caulimovirus group). NAR 15: 8451-8466.
Ryabova LA , Pooggin, MH and Hohn, T (2002) Viral strategies of translation initiation: Ribosomal shunt and reinitiation. Progress in Nucleic Acid Research and Molecular Biology 72: 1-39.
Séralini, G-E., E. Clair, R. Mesnage, S. Gress, N. Defarge, M. Malatesta, D. Hennequin, J. Spiroux de Vendômois. 2012. Long term toxicity of a Roundup herbicide and a Roundup-tolerant genetically modified maize. Food Chem. Toxicol.
Takahashi H, K Shimamoto, Y Ehara (1989) Cauliflower mosaic virus gene VI causes growth suppression, development of necrotic spots and expression of defence-related genes in transgenic tobacco plants. Molecular and General Genetics 216:188-194.
Wilson AK, JR Latham and RA Steinbrecher (2006) Transformation-induced mutations in transgenic plants: Analysis and biosafety implications. Biotechnology and Genetic Engineering Reviews 23: 209-234.
Zijlstra C, Schärer-Hernández N, Gal S, Hohn T. Arabidopsis thaliana expressing the cauliflower mosaic virus ORF VI transgene has a late flowering phenotype. Virus Genes 1996; 13:5-17.

Is the Hidden Viral Gene Safe? GMO Regulators Fail to Convince

October 21, 2015 By jrl in Feature Articles No Comments

by Jonathan Latham, PhD and Allison Wilson, PhD

Having unwittingly allowed a viral gene into the food chain, the response of regulators so far has been to release statements intended to allay public concerns. These statements, however, are inadequate to meet a potentially major food crisis. Not only do they fail to address important issues but they are also scientifically questionable even within their chosen frame of reference.

The GMO regulators involved are the European Food Safety Authority (EFSA) and Food Standards Australia New Zealand (FSANZ). These two agencies have separately released statements (see complete texts EFSA and FSANZ) defending their risk assessments and conclusions in response to our recent article “Regulators Discover a Hidden Viral Gene in GMO crops“.

EFSA Head Office

This article, published by Independent Science News (ISN), addressed a recent scientific publication that showed GMO regulators have repeatedly approved crops carrying a transgenic viral sequence they did not realize also encoded part of a viral gene (Podevin and du Jardin 2012). The ‘hidden’ viral gene in question is called Gene VI and it resides within a DNA sequence called the cauliflower mosaic virus (CaMV) 35S promoter. The CaMV 35S promoter is important for the reason that it is almost ubiquitously used in commercial GMOs. In the ISN article we further proposed that Gene VI of CaMV represents a potential threat to crop health and human health.

In this second article we now question the two statements being offered to the public and journalists by EFSA and FSANZ. The credibility and effectiveness of regulators rests on their actions being based on 1) scientific knowledge, 2) scientific integrity, and 3) the public interest. We assess the EFSA and FSANZ statements and find them to be both scientifically misleading and also inadequate to meet the public interest concerns raised by the discovery of Gene VI. This is due to their reliance on scientifically unverifiable assertions and logical fallacies. We also here draw attention to important scientific questions raised by the recognition of Gene VI within the CaMV promoter that regulators have yet to address.

Regulators Misrepresent the State of Scientific Knowledge

The following six quotes are extracted from the statements by EFSA and FSANZ

1) “Human exposure to DNA from the cauliflower mosaic virus and all its protein products through consumption of conventional foods is common and there is no evidence of any adverse health effects.” (FSANZ)

In order for this statement to be supported by scientific data there would have to exist controlled experiments feeding CaMV DNA, or its viral proteins, to experimental subjects (animal or human). In addition, there would also have to be epidemiological data linking CaMV consumption (which as FSANZ notes appears to be common enough for this to be done) with human health status. To our knowledge, experiments have not been done in either area, and we challenge FSANZ to provide scientific references for this statement. Without relevant experiments absence of evidence is not evidence of absence. It is especially inappropriate given the high and sometimes increasing rates of diet-related chronic illness in countries consuming the most GMOs.

FSANZ’s conclusion also contradicts that of Podevin and du Jardin, who first discovered the problem. These authors specifically do not state that there is “no evidence of any adverse health effects.” On the contrary, their analysis implied Gene VI might be both an allergen and a source of harm as a viral gene. They found that Gene VI “is a potential allergen” (this finding, perhaps because their results were contradictory, was in the conclusions amended to “is most likely not a potential allergen“) and further, they stated that some versions of Gene VI “might result in unintended phenotypic changes” (Podevin and du Jardin 2012).

Whether one looks at the larger picture, or the details, there is no scientific case for the strong reassurance offered by FSANZ.

2) “Genes from the virus in question have been used safely in transgenic plants for almost 30 years” (FSANZ)

The safe history of transgenic plant use is a matter of speculation. Direct animal feeding studies are contradictory and epidemiological studies on actual human populations are lacking. The scientific literature contains multiple reports of harm towards animals from transgenic crops which could have been acknowledged, including recently a paper by the group of Seralini (2012). These reports go back to the 1999 Lancet publication of Ewen and Pusztai which attributed some of the intestinal abnormalities they observed in rats fed GM potatoes to something other than the transgenic protein itself. At the time they speculated, to widespread disbelief, that part of the DNA construct (which included the CaMV 35S promoter) was potentially the cause (Ewen and Pusztai 1999). It is possible that what Ewen and Pusztai observed is explained by the presence of Gene VI fragments.

The strong and repeated impression created by GMO regulators in general is that they believe experiments reporting harm do not merit citation, nor require repeating. This is despite the fact that recognition of alternative hypotheses and repeated experimental testing are the accepted methods of resolving scientific differences and advancing scientific understanding. In sharp contrast, the attitude of regulators appears to be that the presumption of safety is as good as the demonstration of it.

3) “Genes from the virus in question have been extensively characterised” (FSANZ)

Characterization of CaMV and its genome is an active scientific field in which research is ongoing. As we pointed out (in Regulators Discover), a new function for Gene VI was identified even while Podevin and du Jardin’s publication was in press (Love et al. 2012). To imply that sufficient and definitive knowledge has emerged about a scientific subject is to contradict a basic premise of scientific enquiry.

4) “There is no credible scientific evidence suggesting its (Gene VI) use poses a risk to human health or safety” (FSANZ)

As we discussed (in Regulators Discover), a body of scientific work spanning twenty years describes Gene VI as a plant toxin; as interfering with host plant defenses; as interfering with the basic mechanism of protein production (which is common to humans, animals, and plants); and lastly as a disruptor of RNA silencing (also a conserved biological mechanism shared by plants, animals, and humans) (e.g. Park et al. 2001; Love et al. 2012). These facts are clearly established in the scientific literature, even to the point of some of these specific functions being attributed to distinct regions of Gene VI. Thus, in the scientific literature they are not in dispute. Regulators should make clear how the scientific understanding of viral Gene VI is consistent with their allowing it (or a fragment of it) to be present in the food supply. [For a discussion of gene fragments and their significance to Gene VI see footnote (1)].

5) “The viral gene (Gene VI) belongs to a plant virus (Cauliflower Mosaic virus) that cannot infect animals or humans” (EFSA)

This is a misleading statement. We agree that CaMV is not a normal human pathogen; however, the more relevant scientific question is whether CaMV can reproduce itself inside individual human cells and interfere with their normal functioning. To our knowledge, there have been no attempts made to infect animal cells or human cells with CaMV in a scientific experiment. Without such specific experiments EFSA’s statement is scientifically unverifiable and unsupported. We are not surprised, therefore, that when asked to provide supporting data for this statement EFSA failed to do so (2). It is known, however, that parts of CaMV are functional in mammals. The CaMV 35S promoter is active in hamster and human cell lines (Tepfer et al. 2004; Myhre et al. 2006). Thus the only pertinent scientific evidence casts active doubt on the accuracy of EFSA’s statement.

6) “(Gene VI) therefore presents no threat to human or animal health” (EFSA)

This statement is formally linked by EFSA to the one above (Point 5). Even were its premise (that CaMV is not itself harmful) to be scientifically established, it is nevertheless false to equate the hazards of a living, replicating viral infection with the hazards from a gene fragment found (and potentially highly expressed) in every cell of a GMO food plant. A partial list of the situations in which they potentially (or actually) are dissimilar would include:

a) As discussed (in Regulators Discover), depending on the specifics of its genome integration into commercial GMOs, Gene VI DNA may produce either a simple viral protein fragment or a chimeric (part-viral) protein. In either case the result will not be equivalent in structure, cellular location, or quantity, to any protein produced by the virus.

b) The natural hosts of CaMV are plants in the brassica family (Schoelz 2008). Gene VI in GMO crops is found commercially mainly in soybeans, cotton, maize and canola. Only the latter is a brassica. Therefore, the genetic and physiological context of transgenic Gene VI is typically not equivalent to a natural viral infection.

c) Gene VI in nature is produced in the context of an active viral infection process. If Gene VI is expressed in a transgenic plant this will mostly occur in uninfected cells where it will not be interacting with other CaMV proteins. Many potentially important differences arise from this fact. Viral proteins are commonly modified by viral infection (Hellen 1989), are differently active in the presence of other viral proteins (Asai et al. 2006), or transport each other to different cellular compartments (Sanderfoot and Lazarowitz 1995).

A simple hypothetical example illustrates the potential implications. Gene VI is known to disrupt protein production, but if it requires other viral components to transport it to where protein production occurs, then it could be harmless while inside a transgenic plant but could still be toxic to humans when cells are broken open during consumption. This series of events is far from implausible. Some of the most common plant toxins are the cyanogenic glycosides, and they work in just this way to release cyanide when tissues are chewed (Poulton 1990).

Thus one can reasonably propose, that in the presence of the virus itself, intact Gene VI may behave even radically differently compared to a transgenic protein fragment encoded in a CaMV promoter. It may therefore present a substantially different risk. For both EFSA and FSANZ to use the implied safety of CaMV (which as mentioned has never been established) to infer the inherent safety of Gene VI fragments is therefore misleading. Such arguments are irrelevant distractions from the much less reassuring actual scientific information that does exist about Gene VI and which was discussed in detail in our previous article.

In summary, in their statements, EFSA and FSANZ assemble arguments that are either irrelevant (such as that CaMV is a normal part of the diet or that CaMV is toxicologically equivalent to Gene VI) or are based on unsubstantiated assertions. Consequently, through a series of logical flaws and assumptions, EFSA and FSANZ misrepresent both the state and the certainty of scientific knowledge regarding Gene VI. It is potentially acceptable for regulators to condense or simplify complex scientific information to educate or inform a lay public. What is not acceptable, however, is to ‘inform’ the public with misinformation.

The truly important safety concern is that the weaknesses of regulators’ arguments stem from a fundamental cause. In comparison to the evidence showing potential for serious harm, there are no solid experimental or epidemiological data supporting the proposition that Gene VI, or fragments thereof, are harmless.

Regulators Fail to Address Key Findings

An important scientific question was left unanswered by regulators’ official statements. Once the CaMV 35S promoter was identified as encoding a viral gene, regulators should have investigated whether related promoters approved by them also encoded viral genes (3). Our previous article showed that they do. The FMV 35S promoter of figwort mosaic virus overlaps its cognate Gene VI. Various versions of the FMV 35S promoter have been incorporated into numerous GMO crops produced by Monsanto, including maize (MON89034), soybean (MON89778 and MON87705), sugar beet (H7-1), cotton (MON88913),  and canola (GT73). The longest of these FMV promoters has been commercialized in the EU, Australia, New Zealand, as well as the US, and is described in applications as being 562 base pairs in length, which is close to half the length of the entire Gene VI. Nevertheless, the FMV Gene VI has not so far been acknowledged by EFSA, FSANZ, or Podevin and du Jardin.

This additional discovery has many regulatory and biosafety implications, but the one most relevant here is that the reassurances offered so far by EFSA and FSANZ, while scientifically inadequate, are also primarily specific to Gene VI of CaMV. They do not apply to FMV which was isolated from figwort (Scrophularia californica) a wild species native to the southwestern US. Figwort and FMV have neither a history of widespread consumption, nor positive scientific evidence for safety.

For public safety reasons we ask why have regulators not acknowledged that FMV 35S promoters pose the same (or greater) risk of harm? What attempts are EFSA and FSANZ making to address the public safety issues with FMV Gene VI in the food supply (4)?

Conclusions

There are presently three distinct assessments of the hazards arising from the presence of Gene VI sequences in GMOs. Regulators FSANZ and EFSA are offering categorical reassurances that, with respect to Gene VI in CaMV, “there is no evidence of adverse health effects” (FSANZ), that “there are no scientific grounds for reviewing approvals” (FSANZ) and “no safety concerns were identified” (EFSA).

In contrast, Podevin and du Jardin wrote that, depending on the length of Gene VI inserted, Gene VI “might result in unintended phenotypic changes“, that “unintended effects” were “unlikely“, that “unintended effects” had a “low likelihood“. Moreover, their data show that (in addition to its viral functions) the protein product of Gene VI, according to a standard algorithm “is a potential allergen“. These conclusions, though imprecisely defined, are distinguishable from zero risk and appear incompatible with the categorical reassurances of EFSA and FSANZ. This is a noteworthy discrepancy in that it clearly appears to contradict the supposed reliance of regulators on the peer-reviewed scientific literature.

Our own analysis takes a third position. Based on a review of known functions of Gene VI we went further and stated that Gene VI “might not be safe for human consumption” and “may disturb the normal functioning of crops“. We also noted, unlike EFSA, FSANZ, and Podevin and du Jardin, that FMV promoters also overlap FMV Gene VI. Therefore, we recommended a recall of Gene VI-containing GMO crops.

This recommendation for a recall, which we reiterate here, was based on transparent reasoning and clear scientific evidence of (i) Gene VI plant toxicity and potential human toxicity, (ii) that Gene VI is an incompletely-characterized gene derived from a pathogen, (iii) that transgenic Gene VI can cause infection of crops by novel pathogens and, (iv) there exists a clear possibility that Gene VI could become expressed in commercial GMOs. We believe that, if these facts had been known to regulators in advance, such a gene would never have been approved.

We also note some additional facts in this case:
(1) By approving transgenes containing viral sequences, regulators have placed the public in an entirely unnecessary position of risk (since non-viral promoters were available).
(2) The failure of regulators to identify Gene VI in initial assessments occurred in spite of a “detailed examination of the inserted sequence” (EFSA), and even though Gene VI was described in the scientific literature as long ago as 1980.
(3) As a consequence regulators have been forced to enter into a retrospective discussion of the hazards of Gene VI of CaMV (and have apparently yet to do so for Gene VI of FMV).
(4) Regulators have failed to implement the GMO monitoring procedures that might have offered protection against such regulatory failures. Monitoring would have allowed regulators to definitively place scientific limits on the extent of the harm from Gene VI in commercial crops and in the food chain.

These four reasons alone define this episode as a categorical and systemic failure of risk assessment. But the cumulative errors are now substantively increased by the evasions, the misrepresentations of scientific knowledge, and the logical flaws contained in regulators’ ‘reassurances’.

Combined with other recent scientific reversals and repeated questions over conflicts of interest, EFSA’s credibility is at a low point. Three immediate actions would begin to restore confidence that EFSA is now acting in accordance with the scientific evidence and the public interest. The first would be to ban the future use of viral sequences in commercial GMOs; the second would be to recall transgenic events containing CaMV and FMV 35S promoters; the third would be to implement meaningful GMO monitoring. These actions will have the further benefit of sending a clear signal to GMO developers that safety needs to be built into GMOs and that regulators will not tolerate unnecessary hazards and risks.

Footnotes
1) The scientific literature describes numerous functional gene and protein fragments. They include many transgenic proteins. For example, most insecticidal Bt toxins (the Cry proteins) in commercial GMOs are fragments and do not produce the full length native protein. In the case of the Cry protein in MON810 (a GMO maize event in commercial use) sequences are missing from both ends of the native protein as the result of an accident during transgene insertion (Freese and Schubert 2004).

EFSA and FSANZ could also have noted that viral proteins, presumably because they are often multifunctional, can even gain extra functions when expressed as fragments (Nagano et al. 2001).

And finally, the infamous US corn failures of 1971 and 1972, which were the most widespread genetic failures of a crop plant ever recorded, resulted from a spontaneous genetic rearrangement that created a novel gene called T-urf13 (Ullstrup 1972). T-urf13 produced a protein fragment comparable in size to the smallest Gene VI sequence identified by Podevin and du Jardin. It is a fusion protein created from at least three separate genes (Levings 1990), and confers almost total susceptibility to the maize pathogen southern corn leaf blight (Bipolaris maydis; race T). The result, since T-urf13 was in almost universal use, was the substantial destruction of the US corn crop two years in succession. The T-urf13 incident is a highly relevant model for how Gene VI could be expressed as a fusion protein in a widely grown transgenic event and cause widespread harm.

The above are only a few of many examples.

2) When asked for supporting data, EFSA declined to identify specific experiments. The following is from an exchange of letters between EFSA and Fran Murrell of MADGE, Australia (Feb 2013):

Dear EFSA
In your “FAQ on inserted fragment of viral gene in GM plant”
you say:

“The viral gene (Gene VI) belongs to a plant virus (Cauliflower Mosaic virus) that cannot infect animals or humans and therefore presents no threat to human or animal health. This virus naturally infects many plants with no recorded health effects.”

Can you please send me references to support:
a) the claim that the CaMV virus can’t infect humans/animals.
b) research into the health effects of CaMV

Many thanks, Fran Murrell
EFSA’s Answer:

Dear Mr Murell,
Thank you for your email and interest in the European Food Safety Authority (EFSA).

a) It is generally accepted by the scientific community that plant viruses cannot infect animals and vice-versa. To date, there are no known cases of a plant viruses which can infect vertebrates or humans(1,2). This is also the case of CaMV, for which the only described hosts are plants (3).

b) There are no reported health effects on the CaMV, in spite that it is estimated that ca 10% of the cauliflowers and cabbages are infected with CaMV (4). With respect to the gene VI of CaMV, recent investigations did not find any similarity to known toxins or allergens (5).

References
1. Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA, editors (2005). Virus Taxonomy, VIIIth Report of the ICTV. London, UK: Elsevier. 1259 p.
2. Jones RA (2009). Plant virus emergence and evolution: Origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Research 141: 113-130.
3. Brunt AA, Crabtree K, Dallwitz MJ, Gibbs AJ, Watson L, Zurcher EJ, editors (1996). Plant Viruses Online: Descriptions and Lists from the VIDE Database. (http://pvo.bio-mirror.cn/descr184.htm)
4. Hull R, Covey SN, Dale P, (2000). Genetically modified plants and the 35S promoter: assessing the risks and enhancing the debate. Microbial Ecology in Health and Disease 12: 1-5
5. Podevin N, du Jardin P, (2012). Possible consequences of the overlap between the CaMV 35S promoter regions in plant transformation vectors used and the viral gene VI in transgenic plants. GM Crops and Food 3: 1-5

Conclusion: EFSA again failed to provide specific evidence of feeding studies or epidemiological studies of  CaMV toxicity.

3) There is a wealth of evidence that regulators had no prior knowledge of Gene VI. FSANZ, for example, wrote in its 2005 “Final Assessment Report” to approve Monsanto’s MON88913 cotton:

“Although CaMV is a known plant pathogen, only a single fragment of the CaMV genome corresponding to a promoter, has been transferred into cotton (Odell et al 1985). No other DNA fragments, including genes that code for pathogenicity of the virus, has been transferred into cotton line MON88913.”

FSANZ describes it here as “only” a “promoter“. As in other regulatory documents, there is no recognition or mention of Gene VI. Thus the Podevin and du Jardin publication is the first public document produced by regulators to expressly mention Gene VI by name.

4) Why further experiments are unlikely to promptly and adequately resolve the safety issues surrounding Gene VI: A frequently asked question has been whether further experiments can resolve the safety issues surrounding Gene VI. Two distinct issues seem relevant. The first is that further experiments take time. It will be many years before they yield answers, during which time the public will continue to be exposed to any hazards arising from expression of Gene VI sequences. That is the simple reason why such experiments are normally done before commercialization. In this case, if the existence of a gene that is toxic to plants, that enhances pathogen vulnerability, that derails protein production and inhibits RNA silencing, had been known to regulators beforehand it seems inconceivable that they would have approved it. Therefore, a recall decision is appropriate and can be made with the data available now.

The second issue relates to the practical limitations of science itself. The limitations of science are rarely discussed, in part because they often only come to the fore in issues such as this, when risk assessment or drug development require laboratory-based science to be tested in the real world. The general form of these limitations is that experiments, either on the functions (or toxicity) of Gene VI itself, or its expression from individual transgenic events, are unlikely to give results that are definitive. There are several reasons for this.

i) Any single experimental methodology, or even set of experiments, that could be proposed, from transcriptomics to proteomics (to quantify Gene VI expression); or animal feeding experiments to determine toxicity; or even including DNA sequence analysis of individual insertion events (to look for open reading frames), necessarily have numerous and significant limitations. These quickly become evident in high-stakes discussions of any scientific subject. Thus, for example, proteomics experiments can in theory detect the presence (or absence) of proteins but their sensitivity is inevitably limited.

In one experiment relevant to the present case proteomics failed to detect a transgenic enzyme conferring antibiotic resistance even though it was confirmed to have been present and active (Corpillo et al. 2004). As another example, sequencing of transgenic events is widely regarded (unlike proteomics) as definitive, but to determine the meaning of that sequence, e.g. whether an open reading frame is functional or expressed, is a hard problem since the sequence requires interpretation. Moreover, there are additional complicating factors, such as splicing of mRNAs, that make DNA sequencing an imperfect predictor of gene expression (Rang et al. 2005). Thus EFSA claims to have conducted a “detailed examination of the inserted sequence” but they still missed Gene VI.

ii) Scientific findings are normally considered in the abstract. It is rarely acknowledged that, especially in biology, experiments are specific to a particular time and location. This limitation comes to the fore in risk assessments that require specific and detailed information about a complex real-world situation.

Thus each transgenic Gene VI fragment is a novel sequence in a unique genomic location in a specific crop variety that will be grown in variable field and soil conditions. This series of unique parameters means that any data collected under one or a few sets of conditions may be invalid under others. For this same reason, data from any one Gene VI transgene insertion event have only limited relevance to any other event. Regulatory science typically depends on ignoring such problems, but they are very real.

iii) A third complication is that even successful and rigorous experiments, performed under the most relevant conditions, do not necessarily yield more certainty. Sometimes, such as when they overturn widely held assumptions, they yield less. This may seem counterintuitive because science is often conceptualized as ‘progress’ towards a definitive or single truth, but actually this progress is largely an illusion caused by a limited frame of reference.

These three points are not meant as obscurantism. We believe that experiments are the key to furthering understanding, but we also recognize that their meaning can be obscure and that worthwhile risk assessment is slow. A scientific reductionism that imagines safety issues can be dealt with quickly and definitively by a few experiments fails to take into account the nature of biology and the nature of scientific understanding. We might have learned by now to not have unreasonable expectations of science, especially in biology. If, forty years after it started, the war on cancer is still not won, it is because there are good reasons for that.

The consequence of all this is that a broad perspective includes respecting the fact that the highest purpose of risk assessment is to protect the public. A recall, therefore, should be the priority. Experiments can be done later, or in parallel.

References
Asai R, A Kato, K Kato, M Kanamori-Koyama, K Sugimoto, T Sairenji, Y Nishiyama and Kawaguchi Y (2006) Epstein-Barr Virus Protein Kinase BGLF4 Is a Virion Tegument Protein That Dissociates from Virions in a Phosphorylation-Dependent Process and Phosphorylates the Viral Immediate-Early Protein BZLF1. J Virol. 80: 5125–5134.
Corpillo D, G Gardini1, AM Vaira, M Basso, S Aime, GP Accotto, M Fasano (2004) Proteomics as a tool to improve investigation of substantial equivalence in genetically modified organisms: The case of a virus‐resistant tomato. Proteomics 4: 193-200.
Ewen S and Pusztai A (1999) Effect of diets containing genetically modified potatoes expressing Galanthus nivalis lectin on rat small intestine. The Lancet 354 1353-54.
Freese W and Schubert D (2004) Safety Testing and Regulation of Genetically Engineered Foods. (2004), Biotechnology and Genetic Engineering Reviews 21: 299-324.
Hellen CUT, HG Kraeusslich, E Wimmer (1989) Proteolytic processing of polyproteins in the replication of RNA viruses. Biochemistry 28: 9881–9890.
Ioannidis JPA (2005) Why Most Published Research Findings Are False. PLoS Med 2(8): e124. doi:10.1371/journal.pmed.0020124
Levings CS (1990) The Texas cytoplasm of maize: Cytoplasmic Male Sterility and Disease Susceptibility Science 250: 942-947.
Love AJ, C Geri, J Laird, C Carr, BW Yun, GJ Loake et al (2012) Cauliflower mosaic virus Protein P6 Inhibits Signaling Responses to Salicylic Acid and Regulates Innate Immunity. PLoS One. 7(10): e47535.
Myhre MR,  Fenton KA, Eggert  J, Nielsen KM, Traavik T (2006)The 35S CaMV plant virus promoter is active in human enterocyte-like cells. Eur Food Res and Technology 222: 185-193.
Nagano H, K Mise, I Furusawa, T Okuno (2001) Conversion in the Requirement of Coat Protein in Cell-to-Cell Movement Mediated by the Cucumber Mosaic Virus Movement Protein.  Journal of Virology 75: 8045–8053.
Odell JT, F Nagy, NH Chua (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313: 810-812.
Park H-S, Himmelbach A, Browning KS, Hohn T, and Ryabova LA (2001). A plant viral ‘reinitiation’ factor interacts with the host translational machinery. Cell 106: 723–733.
Podevin N and du Jardin P (2012) Possible consequences of the overlap between the CaMV 35S promoter regions in plant transformation vectors used and the viral gene VI in transgenic plants. GM Crops and Food 3: 1-5.
Poulton J (1990) Cyanogenesis in Plants. Plant Physiology 94: 401-405.
Rang A, B Linke, B Jansen (2005) Detection of RNA variants transcribed from the transgene in Roundup Ready soybean.  European Food Research and Technology 220: 438-443.
Sanderfoot AA, SG Lazarowitz (1995) Cooperation in Viral Movement: The Geminivirus BL1 Movement Protein Interacts with BR1 and Redirects It from the Nucleus to the Cell Periphery. The Plant Cell 7: 1185-1194.
Schoelz JE (2008) Caulimoviruses: General Features. 457-464. Encyclopedia of Virology 3rd Edition (Elsevier, Oxford).
Séralini, G-E., E. Clair, R. Mesnage, S. Gress, N. Defarge, M. Malatesta, D. Hennequin, J. Spiroux de Vendômois. 2012. Long term toxicity of a Roundup herbicide and a Roundup-tolerant genetically modified maize. Food Chem. Toxicol. 50: 4221–4231.
Tepfer M,  Gaubert S,  Leroux-Coyau M, Prince S, Houdebine L-M (2004) Transient expression in mammalian cells of transgenes transcribed from the Cauliflower mosaic virus 35S promoter. Environmental Biosafety Research 3: 91-97.
Ullstrup AJ (1972) The impacts of the southern corn leaf blight epidemics of 1970-1971. Annual Review of Phytopathology 10: 37-50.

The Goodman Affair: Monsanto Targets the Heart of Science

October 21, 2015 By jrl in Feature Articles No Comments

by Claire Robinson and Jonathan Latham, PhD

Richard Smith, former editor of the British Medical Journal, has jested that instead of scientific peer review, its rival The Lancet had a system of throwing a pile of papers down the stairs and publishing those that reached the bottom. On another occasion, Smith was challenged to publish an issue of the BMJ exclusively comprising papers that had failed peer review and see if anybody noticed. He replied, “How do you know I haven’t already done it?”

As Smith’s stories show, journal editors have a lot of power in science – power that provides opportunities for abuse. The life science industry knows this, and has increasingly moved to influence and control science publishing.

Richard E Goodman, University of Nebraska

The strategy, often with the willing cooperation of publishers, is effective and sometimes blatant. In 2009, the scientific publishing giant Elsevier was found to have invented an entire medical journal, complete with editorial board, in order to publish papers promoting the products of the pharmaceutical manufacturer Merck. Merck provided the papers, Elsevier published them, and doctors read them, unaware that the Australasian Journal of Bone and Joint Medicine was simply a stuffed dummy.

Fast forward to September 2012, when the scientific journal Food and Chemical Toxicology (FCT) published a study that caused an international storm (Séralini, et al. 2012). The study, led by Prof Gilles-Eric Séralini of the University of Caen, France, suggested a Monsanto genetically modified (GM) maize, and the Roundup herbicide it is grown with, pose serious health risks. The two-year feeding study found that rats fed both suffered severe organ damage and increased rates of tumors and premature death. Both the herbicide (Roundup) and the GM maize are Monsanto products. Corinne Lepage, France’s former environment minister, called the study “a bomb”.

Subsequently, an orchestrated campaign was launched to discredit the study in the media and persuade the journal to retract it. Many of those who wrote letters to FCT (which is published by Elsevier) had conflicts of interest with the GM industry and its lobby groups, though these were not publicly disclosed.

The journal did not retract the study (editor’s note: later they did). But just a few months later, in early 2013 the FCT editorial board acquired a new “Associate Editor for biotechnology”, Richard E. Goodman. This was a new position, seemingly established especially for Goodman in the wake of the “Séralini affair”.

Richard E. Goodman is professor at the Food Allergy Research and Resource Program, University of Nebraska. But he is also a former Monsanto employee, who worked for the company between 1997 and 2004. While at Monsanto he assessed the allergenicity of the company’s GM crops and published papers on its behalf on allergenicity and safety issues relating to GM food (Goodman and Leach 2004).

Goodman had no documented connection to the journal until February 2013. His fast-tracked appointment, directly onto the upper editorial board raises urgent questions. Does Monsanto now effectively decide which papers on biotechnology are published in FCT? And is this part of an attempt by Monsanto and the life science industry to seize control of science?

To equate one journal with “science” may seem like an exaggeration. But peer-reviewed publication, in the minds of most scientists, is science. Once a paper is published in an academic journal it enters the canon and stands with the discovery of plate tectonics or the structure of DNA. All other research, no matter how groundbreaking or true, is irrelevant. As a scientist once scathingly said of the “commercially confidential” industry safety data that underpin approvals of chemicals and GM foods, “If it isn’t published, it doesn’t exist.”

Goodman’s ILSI links

The industry affiliations of FCT’s new gatekeeper for biotechnology are not restricted to having worked directly for Monsanto. Goodman has an active and ongoing involvement with the International Life Sciences Institute (ILSI). ILSI is funded by the multinational GM and agrochemical companies, including Monsanto. It develops industry-friendly risk assessment methods for GM foods and chemical food contaminants and inserts them into government regulations.

ILSI describes itself as a public interest non-profit but its infiltration of regulatory agencies and influence on risk assessment policy has become highly controversial in North America and Europe. In 2005 US-based non-profits and trade unions wrote to the World Health Organization (WHO) protesting against ILSI’s influence on international health standards protecting food and water supplies. As a result, the WHO barred ILSI from taking part in WHO activities setting safety standards, because of its funding sources.  And in Europe in 2012, Diana Banati, then head of the management board at the European Food Safety Authority (EFSA), had to resign over her undisclosed long-standing involvement with ILSI (Robinson et al. 2013).

Goodman’s appointment to FCT is surprising also for the fact that the journal already has expertise in GM food safety. Of the four senior editors, José L. Domingo is a professor of toxicology and environmental health and author of two comprehensive reviews of GM food safety studies (Domingo  2007; Domingo and Bordonaba 2011). Both reviews expressed skepticism of the thesis that GMOs are safe. Consequently, it is far from clear why FCT needs an “associate editor for biotechnology”, but it is clear why Monsanto would have an interest in ensuring that the “Séralini affair” is never repeated.

Editing the scientific record: The case of Paul Christou

FCT is not the only academic journal that appears to have been captured by commercial interests. After the initial campaign failed to get FCT to retract the Séralini study, the journal Transgenic Research published a heavy-handed critique of the study and of the researchers themselves (Arjo et al., 2013). The lead author of that critique was Paul Christou.

Christou and co-authors castigated the editor of FCT for publishing the study, calling it “a clear and egregious breach of the standards of scientific publishing”. They insisted that the journal editor retract the study “based on its clearly flawed data, its breaches of ethical standards, and the strong evidence for scientific misconduct and abuse of the peer-review process”. “Even a full retraction of the Séralini article” wrote Christou, “will not cleanse the Internet of the inflammatory images of tumorous rats.”

The same writers further implied that the Séralini study was “fraudulent”, that the researchers failed to analyse the data objectively, and that the treatment of the experimental animals was inhumane.

This is not the first time Christou has attacked scientific findings that have raised doubts about GM crops. In 2001 Ignacio Chapela and David Quist of the University of California, Berkeley, reported in the journal Nature that indigenous Mexican maize varieties had become contaminated with GM genes (Quist and Chapela, 2001). This issue was, and remains, highly controversial since Mexico is the genetic centre of origin for maize. In an exact parallel with the Séralini study, an internet campaign was waged against Chapela and Quist demanding that the journal retract the study. Then Christou, just as he was later to do with the Séralini study, attacked Chapela and Quist’s paper in an article in Transgenic Research. The title said it all: “No credible scientific evidence is presented to support claims that transgenic DNA was introgressed into traditional maize landraces in Oaxaca, Mexico” (Christou, 2002).

Responding to the campaign, Nature editor Philip Campbell asked Chapela and Quist for more data, which they provided, and arranged another round of peer review. Only one reviewer in the final group of three supported retraction, and no one had presented any data or analysis that contradicted Chapela and Quist’s main finding. Nevertheless, Nature asserted, “The evidence available is not sufficient to justify the publication of the original paper”. Some subsequent investigations, testing different samples, reported finding GM genes in native landraces of Mexican corn (Pineyro-Nelson et al. 2009), while others did not (Ortiz-Garcia et al. 2005).

Paul Christou, in contrast, probably did not have much trouble getting either of his critiques published in Transgenic Research. He is the journal’s editor-in-chief. And, like Goodman, Christou is connected to Monsanto. Monsanto bought the GM seed company Agracetus (Christou’s former employer) and Monsanto now holds patents for the production of GM crops on which Christou is named as the inventor.  It is normal practice to declare inventor status on patents as a competing interest in scientific articles, but Christou did not disclose either conflict of interest – his editorship of the journal or his patent inventor status – in his critique of the Séralini study.

The Ermakova affair: Preemptive editing of the scientific record

Not only can journal editors prevent the publication of research showing problems with GM crops in their own journals – they can effectively prevent publication elsewhere. In 2007, the leading academic journal Nature Biotechnology featured an extraordinary attack on the work of Russian scientist, Irina Ermakova (Marshall, 2007). Her laboratory research had found decreased weight gain, increased mortality, and decreased fertility in rats fed GM Roundup-tolerant soy over several generations (Ermakova, 2006; Ermakova, 2009).

The editor of Nature Biotechnology, Andrew Marshall, contacted Ermakova, inviting her to answer questions about her findings, which she had only presented at conferences. He told her it was “an opportunity to present your own findings and conclusions in your own words, rather than a critique from one side”. Ermakova agreed.

The process that followed was as deceptive as it was irregular. The editor sent Ermakova a set of questions about her research, which she answered. In due course she was sent a proof of what she thought was to be ‘her’ article, with her byline as author.

However, the article that was finally published was very different. Ermakova’s byline had been removed and Marshall’s substituted. Each of Ermakova’s answers to the questions was followed by a lengthy critique by four pro-GM scientists (Marshall, 2007). The proof sent to Ermakova, now revealed as a ‘dummy proof’, had not included these critical comments. Consequently, she was denied the chance to address them in the same issue of the journal. And in the final article the editor had preserved the critics’ references but removed many of Ermakova’s, with the effect that her statements appeared unsubstantiated.

Nature Biotechnology’s treatment of Ermakova attracted condemnation from many scientists. It was also strongly criticized in some media outlets. Harvey Marcovitch, former editor of a scientific journal and now director of the Committee on Publication Ethics (COPE), which sets ethical standards for academic journals, commented, “This is a type of publication which I have never encountered.” He said that while reading it he was struck by “some surprising things”. He was unwilling to speculate as to what exactly happened: “Either the editor was trying out a new form of experimentation, in which not everything went according to plan, or there was indeed a conspiracy or whatever one wants to call it.”

Dr Brian John of the Wales-based campaign group GM-Free Cymru was more blunt, calling the process “tabloid academic publishing involving deception, lies, duplicity and editorial malpractice”.

Amid the uproar, editor Marshall released his email correspondence with Ermakova on the internet. It showed that far from his having “solicited” the comments from the critics, as he had originally claimed, the four pro-GM scientists had themselves approached the journal proposing their “critique”, and even though none of them are toxicologists, Marshall had agreed. The self-selected critics judged Ermakova’s research – which they had never even seen in its complete form – “demonstrably flawed”.

Nature Biotechnology also failed to fully disclose the conflicts of interest of Ermakova’s critics. Bruce Chassy was lead author on two influential ILSI publications, which defined weak risk assessment methodologies for GM crops that were later inserted into the guidelines of the European Food Safety Authority (EFSA).  Vivian Moses was chairman of CropGen, a GM industry lobby group with Monsanto among its funders.  L. Val Giddings, an industry consultant, was described in the article as formerly of the Biotechnology Industry Organization (BIO). Nature Biotechnology omitted to say that Giddings occupied a senior position at BIO – vice president for food and agriculture – and that BIO’s funders include the GM crop companies, Monsanto, Dow and DuPont. The last of the four critics, Alan McHughen, developed a GM flax called Triffid that in 2009 was found to have contaminated flax supplies coming into Europe from Canada. If these interests had been disclosed, readers might have judged the criticism of Ermakova differently.

Open source scientific publishing?

These examples show that the threat to scientific publishing from industry influence is real. The avenues for researchers to publish critical views in science are already few. This is especially true for the high-impact journals that the media notices and that therefore influence public discourse. Equally problematic is that few scientific institutions will support researchers whose findings contradict industry viewpoints, as Chapela found out when UC Berkeley tried to deny him tenure following the controversial maize study. Even fewer funding sources will give to such researchers. Consequently almost all funding of biosafety research finds its way into the hands of researchers with industry ties.

This directly affects the quality of the science produced. A recent literature review found that most studies concluding that GM foods are as safe as non-GM counterparts were performed by the developer companies or their associates (Domingo and Bordonaba, 2011). It is no coincidence that Norway, a country without an agricultural industry lobby, hosts the only publicly funded institute in the world with a mission to conduct research on the environmental, health and social consequences of genetic engineering.

There are in principle ways within the existing system to mitigate or neutralize the influence of industry on the ability of scientists to publish independent and critical research. The first is transparency in publishing. Journal editors should adopt the COPE guidelines and publish all conflicts of interest among staff and editors.

Also in line with COPE’s stipulation, peer reviewers should be selected to avoid conflicts of interest. If this proves impossible due to the spread of patents and industry research funding, then care must be taken to select a balanced panel representing a plurality of views. FCT is a member of COPE, but does not publish information on editors’ conflicts of interest, and its appointment of Goodman over Domingo shows that it does not seek to avoid them.

There may in fact be a need to critically examine the entire concept of peer review. The limitations of all types of expert opinion – whether that of an individual expert or of an expert panel – are recognized in the field of evidence-based medicine. To address this problem, bodies such as the non-profit Cochrane Collaboration have developed systematic and transparent methodologies to review and evaluate data on the effectiveness of different medical interventions. The aim is to enable healthcare practitioners to make well-informed clinical decisions. The reviewing criteria are transparently set out in advance, so there is less scope for bias in evaluations of studies. When disagreements do occur, it is easy to pinpoint the reason and resolve the problem. Cochrane also implements rules to prevent conflicts of interest among its reviewers and editorial board.

The Cochrane approach is widely respected and the lessons learned in evidence-based medicine about conflicts of interest and resisting industry pressure are being applied to other fields, such as hazardous environmental exposures (Woodruff et al., 2011).  There is no reason why scientific journals, including those publishing GMO research, cannot use similar methods to evaluate papers, so that less discretion is given to experts with conflicts of interest.

Implementing such policies presumes strong support among the scientific community for independent science. But this support may not exist outside of medical research.

FCT took on Goodman, a former Monsanto employee and well-known supporter of industry viewpoints, immediately following the publication of a controversial paper that was critical of Monsanto’s principal products. In doing so, FCT senior management bypassed the normal scientific editorial culture of gradual promotion from within.

Meanwhile, two other prominent academic journals have served as platforms for their editors to generate unsubstantiated and unscientific abuse without any repercussions for their editorial positions. Marshall remains editor of Nature Biotechnology. The fact that journal editors get away with such behavior suggests that support for independent research among scientists is generally lacking and that accountability within the scientific publishing world barely exists.

It seems unlikely that scientific journals will address unaided the defects in scientific publishing at FCT and elsewhere. To do so would require confronting the fundamental problem that academic science now largely makes its money from exploiting conflicts of interest. This has become the underlying business model of science. Universities offer ‘independent’ advice to governments while taking corporate money for ‘research’. Corporations offer that money to universities, not for the knowledge it generates, but primarily for the influence it buys.

These same incentives are reinforced at the personal level as well. Individual scientists occupy taxpayer-funded academic positions while benefitting from patents, stocks and industry consultancies. If journals and government agencies took action to eliminate conflicts of interest, the corporate money for science would dry up, because industry-funded scientists would lose influence.

But if scientific journals do not find a way to level the playing field for critical studies, the few scientists who are still able to carry out independent public interest research may need to find an alternative publishing model: public peer review, or ‘open-source science’. Such online collaborative approaches could even revitalize scientific publishing.

Unless radical reform is achieved, peer-reviewed publication, which many hold to be the defining characteristic of science, will have undergone a remarkable inversion. From its origin as a safeguard of quality and independence, it will have become a tool through which one vision, that of corporate science, came to assert ultimate control. Richard Goodman, FCT’s new Associate Editor for biotechnology, now has the opportunity to throw down the stairs only those papers marked “industry approved”.

Note: Click here to see a response from scientists to the attacks on Séralini

Postcript: FCT has now retracted (Nov 28 2013) the Séralini study. The editors’ letter is at the bottom of this link.

Post-postscript (Feb 25 2015): Food and Chemical Toxicology has expelled Richard Goodman and demoted Wallace Hayes, apparently because of numerous complaints.

References

Arjo G, et al. (2013). Plurality of opinion, scientific discourse and pseudoscience: an in depth analysis of the Séralini et al. study claiming that Roundup Ready corn or the herbicide Roundup cause cancer in rats. Transgenic Research 22: 2 255-267.
Christou P (2002). No credible scientific evidence is presented to support claims that transgenic DNA was introgressed into traditional maize landraces in Oaxaca, Mexico. Transgenic Research 11: iii–v.
Domingo JL (2007). Toxicity studies of genetically modified plants: a review of the published literature. Crit Rev Food Sci Nutr 47(8): 721-733.
Domingo JL and JG Bordonaba (2011). A literature review on the safety assessment of genetically modified plants. Environ Int 37: 734–742.
Ermakova I (2006). Genetically modified soy leads to the decrease of weight and high mortality of rat pups of the first generation. Preliminary studies. Ecosinform. 2006;1:4–9.
Ermakova I (2009). [Influence of soy with gene EPSPS CP4 on the physiological state and reproductive function of rats in the first two generations] [Russian text]. Contemporary Problems in Science and Education 5:15–20.
Marshall A (2007). GM soybeans and health safety – a controversy reexamined. Nat Biotechnol 25: 981–987.
Ortiz-Garcia S, et al. (2005). Absence of detectable transgenes in local landraces of maize in Oaxaca, Mexico. Proceedings of the National Academy of Sciences 102: 18242.
Pineyro-Nelson A, et al. (2009). Transgenes in Mexican maize: molecular evidence and methodological considerations for GMO detection in landrace populations. Mol Ecol 18(4): 750-761.
Quist D and IH Chapela (2001). Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico. Nature 414(6863): 541-543.
Robinson, C, et al. (2013). Conflicts of interest at the European Food Safety Authority erode public confidence. J Epidemiol Community Health.doi:10.1136/jech-2012-202185.
Séralini GE, et al. (2012). Long term toxicity of a Roundup herbicide and a Roundup-tolerant genetically modified maize. Food and Chemical Toxicology 50(11): 4221-4231.
Woodruff TJ, et al. (2011). An evidence-based medicine methodology to bridge the gap between clinical and environmental health sciences. Health Aff (Millwood) 30(5): 931-937.

Science and Social Control: Political Paralysis and the Genetics Agenda

October 21, 2015 By jrl in Feature Articles No Comments

By Jonathan Latham, PhD (Originally posted July 31st and lost after a DDOS (electronic) attack).

Variations in individual “educational attainment” (essentially, whether students complete high school or college) cannot be attributed to inherited genetic differences. That is the finding of a new study reported in Science magazine (Rietveld et al. 2013). According to this research, fully 98% of all variation in educational attainment is accounted for by factors other than a person’s simple genetic makeup.

This implies that most of student success is a consequence of potentially alterable social or environmental factors. This is an important and perhaps surprising observation, of high interest to parents, teachers, and policymakers alike; but it did not make the headlines.

The likely reason is that the authors of the study failed to mention the 98% figure in the title, or in the summary. Nor was it mentioned in the accompanying press release.

the US president speaking with Director of the NIH Francis Collins (Center)

Instead, their discussion and interest focused almost entirely on a different aspect of their findings: that three gene variants each contribute just 0.02% (one part in 5,000) to variation in educational attainment. Thus the final sentence of the summary concluded not with a plea to find effective ways to help all young people to reach their full potential but instead proposed that these three gene variants

“provide promising candidate SNPs (DNA markers) for follow-up work”.

This is as spectacular a misdescription of a scientific finding as is to be found anywhere in the scientific literature. But the question is why? Why did the more than two hundred authors decide to highlight the unimpressive 0.02% and bury the 98%? The easy answer is that the authors are geneticists and that geneticists will not have distinguished careers if variation in genes is irrelevant to health and human achievement. The full answer, however, is considerably more interesting, and much more significant, than simple conflicts of interest.

The broader explanation, which needs to account, for example, for the fact that Science magazine would publish such a discrepant conclusion, is that the science of human biology is in the grip of hidden political forces. These forces are powerful enough to enable (this and other) comprehensively misrepresented genetic studies to evade the corrective potential of the scientific peer review process, and be published in the foremost journals of science.

How money and politics can dictate the conclusions of a scientific study

The easiest starting point to explain this miscarriage of science is to begin with funding. The Rietveld research, we know for a fact, was part of a genetic epidemiology project called the Social Science Genetic Association Consortium (SSGAC). The consortium obtains its money almost entirely from the National Institutes of Health (NIH) and the National Science Foundation, i.e. the US government.

The self-described funding premise of SSGAC is that:

“for most outcomes in life, over half the resemblance of two biological siblings reared in the same family stems from their genetic similarity” (Benjamin et al. 2012).

In other words, SSGAC believed even before Rietveld was published that inherited genetic predispositions make the dominant contribution to ones’ lifetime achievements, in education and apparently “most” spheres of human behavior. Consequently, the aim of all its projects is to physically locate these specific genetic factors on human DNA.

But the actual Rietveld result implies that such genetic predispositions are pretty much irrelevant, at least as far as educational attainment is concerned. Moreover, SSGAC had previously searched for gene variants associated with “general intelligence”, and “economic and political preferences” (such as risk-aversion and trust). For all these traits the search was again unsuccessful; in only one instance did project members find a genetic variant that reached the threshold of statistical significance (which is itself far below what might be considered important as a predisposing factor) (Benjamin et al. 2012; Chabris et al. 2012). Thus we can say that SSGACs’ founding premise is not in alignment with the data.

But that just brings the question back one stage further: why is the US government funding excessively genetic determinist projects such as this in the first place?

The probable answer is that the US education system has many problems, which are exemplified by its low rankings on international scales. There is a danger that blame for these problems might be laid at the door of the secretary for education, the administration, or the President. This possibility could be neatly sidestepped, however, if educational attainment was genetically fated.

Essentially the same political logic applies to any human disease or disorder, or even any social complaint. If the disorder, for example autism, can be shown (or even just suggested) to have a partial genetic origin then a barn door is opened for any accused polluter or policymaker to evade the blame–both legally and in the perception of the public.

This opportunity within biology to make inequalities (not just of wealth) look ‘natural’ has been recognized for a long time. Harvard geneticist Richard Lewontin summed it up his 1992 book ‘The Doctrine of DNA: Biology as Ideology’:

“The notion that the lower classes are biologically inferior to the upper classes……..is meant to legitimate the structures of inequality in our society by putting a biological gloss on them”

Extreme genetics

Recognition that this reasoning aligns the interests of both corporations and governments has coincided with the extraordinary funding opportunities for scientists willing to apply DNA analysis and genomic approaches to vast areas of mental and physical health. Precise figures are not available, but over the last fifteen years close to half the budget of the NIH has gone to genetic analysis of human populations. That is likely in excess of $100 billion dollars in the US alone.

The financial outlay is ongoing: the same SSGAC consortium is also researching the possibility of genetic factors in “subjective well-being” (happiness) and “fertility”. Furthermore, the scope of the search for genetic predispositions is widening. In 2004 science writer John Horgan noted that (unsuccessful) searches have been made for “genes for”

“attention-deficit disorder, obsessive-compulsive disorder, manic depression, schizophrenia, autism, dyslexia, alcoholism, heroin addiction, high IQ, male homosexuality, sadness, extroversion, introversion, novelty seeking, impulsivity, violent aggression, anxiety, anorexia, seasonal affective disorder, and pathological gambling.”

Since he compiled that list the field of “behavioral economics” has been added to the list of genetic searches considered worthy of public support. For example, a 2013 publication in the journal PLOS one (with 68 authors) goes by the title “The Molecular Genetic Architecture of Self-Employment” (van der Loos et al. 2013). Meanwhile, the US National Human Genome Research Institute last year put out a call for evidence asking geneticists to support a search for predispositions to “behavioral adherence” to expert advice (i.e. compliance).

Thus there is operating within the disciplines of medicine, public health, social science, and now economics, a research framework that, if successful, would locate the causes of negative human outcomes internally. At fault will be genes and not circumstances. It is an officially sanctioned and scientific version of “blame the victim”.

Three major strands of evidence support this thesis.

Big tobacco and the origins of human genetics

Most directly of all, there is clear evidence that the search for genetic predispositions is the centerpiece of a longterm corporate agenda whose purpose is to sway public opinion. It began in the 1960s with the tobacco industry at a time when smoking was first implicated in lung cancer. The strategic purpose was to reduce public concern, minimize the likely policy responses, and eliminate potential legal expenses, by funding, encouraging, and then exploiting, human genetic research. This could be done, so the industry thought, by building from scratch a science of genetic risk factors.

This agenda operated until the late 1980s when the tobacco industry became politically too controversial for medical organizations to maintain formal relations. According to research by Helen Wallace of the UK non-profit GeneWatch, the tobacco industry by 1994 had awarded around 1,000 researchers £225 million ($370 million) to nurture research in human genetics (Wallace 2009). This tobacco research money was directed in particular to searches for genetic associations with lung cancer.

As early as 1965, this strategy was sowing uncertainty about the causes of lung cancer. As Dr. George L. Saiger, a consultant paid over $50,000 by the tobacco industry, testified before the US Senate Commerce committee:

“There is strong reason to believe that the constitutional hypothesis fits the evidence appearing in the Report of the Surgeon General’s Committee at least as well as the cigarette hypothesis…”

Proof that this statement was part of a conscious program to build the credibility of a “constitutional hypothesis” (i.e. the existence of genetic predispositions to lung cancer) was subsequently confirmed by searches of the Legacy Tobacco Documents (Gundle et al. 2010). These are internal documents of the tobacco industry, now kept by the University of California, San Francisco, that the industry was compelled to release in a lawsuit settlement.

The tobacco industry also pioneered ‘behavioral genetics’. The idea that even addiction to cigarettes was a genetic phenomenon (and not a characteristic of cigarettes or tobacco) originated with the tobacco industry.  The consistent aim behind promoting genetics, according to a memo written by Fred R. Panzer, Vice President of Public Relations for the Tobacco Institute, was to change the focus of attention “from one product to a type of person”.

The tobacco industry was still actively pursuing the same public relations (PR) strategy when, for example, senior tobacco executives met with geneticist and Nobel Laureate Sydney Brenner in 1988, just a month before he set up the Human Genome Organization (HUGO) (Wallace 2009). HUGO was the organization formed to oversee the Human Genome Sequencing Project.

Human genetics is not public health

The second important point of evidence is that the public interest justification for identifying gene variants is hard to discern. For example, even if predispositions for educational attainment were to be found, it is not clear how public welfare would benefit. For example, it wouldn’t affect at all the need for high quality education, either for individuals found wanting, or for those of average or higher ability. This crucial point is glossed over by proponents of genetic explanations who, according to Chaufan and Joseph (2013), merely assume that genetic knowledge

“will necessarily improve the prediction, diagnosis, prevention, or treatment of common disorders.”

As these weaknesses have become clearer, it has become more common for public health professionals to question the utility of these studies and argue that, at a minimum:

“advocates of genomic medicine should be much more modest”

about the likely impacts on public health (Hall, Mathews, and Morley 2010).

The genetic evidence deficit

The third reason to suspect that a political and not a scientific agenda underlies the continued push for genetic research is that the money has continued to flow even in the face of a tsunami of evidence against its major predictions. As Hall and colleagues also wrote, geneticists:

“have not identified major susceptibility alleles (gene variants) for most common diseases.”  (Hall, Mathews, and Morley 2010).

Even the findings that have been claimed (which are modest) have consistently not stood up to retrospective replication (Ioannidis and Panagiotou 2011). The absence of evidence is now so clear that even leaders in the field of human genetics sometimes find an acknowledgement is necessary (though only in the context of a request for more funding) (Manolio et al. 2009).

As the evidence for genetic causations has continuously and stubbornly refused to appear, critics have grown bolder. Chaufan and Joseph in 2013 felt confident enough to write:

“these variants have not been found because they do not exist” (Chaufan and Joseph 2013).

It is important, nevertheless, to acknowledge that there are exceptions. The breast cancer mutations of the BRCA1 gene are one class of exception. But even BRCA1 is an exception that proves the rule. BRCA1 is well known precisely because it remains an almost unique example of a prominent genetic predisposition to a common disease. Yet even BRCA1 is oversold. More than 90% of all breast cancer cases are unrelated to it (Gage et al. 2012).

The other class of exceptions are those relatively rare disorders for which there is clear evidence of a simple genetic cause. Cystic fibrosis is an example of such a disease; Huntington’s disease is another.

However, to return to the main point, for common physical and mental health conditions, such as heart disease, cancer, autism and schizophrenia, the situation has proven very different. The epidemiological and genetic evidence suggests that genetic risk is at most a minor contributing component. For behavioral and economic traits the lack of positive genetic data is even more apparent.

Consequently, an extra-scientific explanation is required to explain why very large sums of taxpayer money have funded human genetic research in the face of such negative results.

Human genetics: a PR success built on a scientific failure

In purely research terms, the search for human genetic predispositions has foundered. Yet this failure has done curiously little to prevent medical and behavioral genetics from being an overwhelming PR success. Thanks to the tobacco industry (joined later by the chemical industry, the food industry, the pharmaceutical industry, all the way to the gambling industry), “genes for” any disease, or talent, or human oddity, is nowadays a standard topic of adult conversation.

This was not always the case. When the geneticist Mary-Claire King (co-discoverer of the BRCA1 gene) was interviewed recently in New Scientist, she was at pains to remind the interviewer that in the 1980s convincing funders to explore an inherited genetic basis for cancer was exceedingly difficult.

“The main experience of the period was that people completely ignored me” (Powerful genes New Scientist 22 June 2013).

It is hard to be certain but it is likely that this sea change in public opinion protected the tobacco industry, which continues to thrive. It also, we have previously argued, played a key role in protecting polluters and politicians of all kinds from facing regulations and responsibility. Much of the explanation for our societies’ generic failure to address social and environmental problems can probably be attributed to overreliance on genetic determinist explanations.

Yet beyond the example of BRCA1, few scientists or lay people could name a specific discovery to back up their genetic suppositions. This discrepancy, between the failure of the science program itself and its success as a PR project is truly a sobering testament to the power of modern public relations. It is also an indictment of science journalism and the inadequacy of the science media as a whole.

Free enquiry vs directed science

The above analysis proposes that it is a mistake to ascribe responsibility for their conclusions solely to authors of papers such as Rietveld et al. Equally culpable is the operating system within which these researchers find themselves. Science magazine, for example, including its editors and reviewers, is clearly complicit in publishing misleading conclusions. Funding agencies too are awarding scarce resources to speculative gene hunting projects at the expense of pressing public health questions. The evidence thus points to a broad and system-wide failure.

Not sufficiently understood by outsiders is the fact that most of science is essentially now a top-down project. There persists a romantic notion (retained by many scientists) that science is a process of free enquiry. In this view, the endless grant applications and the requests for applications are merely quality control measures, or irritants imposed by bureaucrats.

But free enquiry in science is all but extinct. In reality, only a tiny proportion of research in biology gets done outside of straightjackets imposed by funding agencies. Researchers design their projects around funding programs; universities organize their hiring around them, and every experiment is carefully designed to bolster the next grant application.

The consequences of this dynamic are that individual scientists have negligible power within the system; but more importantly it opens a route by which powerful political or commercial forces can surreptitiously set the science agenda from above.

In the case of medical genetics that power has been used to deform our understanding of human nature itself. Public money has bought not scientific ‘progress’ but the domination of intellectual enquiry by an entirely malevolent project, conceived fully outside of science. This PR project was intended only to ensure political paralysis and the consolidation of economic power; and whatever agenda scientists thought they were following was entirely incidental. The result is a full-blown enlightenment malfunction.

Nevertheless, despite the still almost daily press barrage of genetic determinist headlines, our fate is not written in our DNA; and the state of public understanding can in principle be reversed. The hopeful truth is that there are compelling reasons to remove subsidies for junk food, pesticides from the food and water, toxins from the workplace, and social and economic injustices from society, and that when we do, things will improve.

References
Benjamin et al. (2012) The Promises and Pitfalls of Genoeconomics Annual Review of Economics 4: 627-662.
Benjamin D et al. (2012) The genetic architecture of economic and political preferences. Proc. Nat. Acad. Sci.  109: 8026–8031.
Chabris CF, et al. (2012) Most reported genetic associations with general intelligence are probably false positives. Psychol Sci. 23: 1314-23.
Dermitzakis E.T. and Clark A.G. (2009) Life after GWA studies. Science 326: 239-240.
Gage M, Wattendorf D, Henry LR. (2012) Translational advances regarding hereditary breast cancer syndromes. J Surg Oncol. 105: 444-51. doi: 10.1002/jso.21856.
Gundle KR. Dingel, M and Barbara A. Koenig (2010) “To Prove This is the Industry’s Best Hope”: Big Tobacco’s Support of Research on the Genetics of Nicotine. Addiction. 105: 974–983. doi:  10.1111/j.1360-0443.2010.02940.x
Hall WD, Mathews R, Morley KI (2010) Being More Realistic about the Public Health Impact of Genomic Medicine. PLoS Med 7(10): e1000347. doi:10.1371/journal.pmed.1000347
Ioannidis JP and Panagiotou O (2011) Comparison of Effect Sizes Associated With Biomarkers Reported in Highly Cited Individual Articles and in Subsequent Meta-analyses. J. Am. Med. Assoc. 305: 2200-2210.
Chaufan C and Joseph J (2013) The ‘Missing Heritability’ of Common Disorders: Should Health Researchers Care? International Journal of Health Services 43: 281–303
Manolio T. et al. (2009) Finding the missing heritability of complex diseases. Nature 461: 747-753.
Rietveld et al. (2013) GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science, 340, 1467-1471, . doi:10.1126/science.1235488
van der Loos MJHM, Rietveld CA, Eklund N, Koellinger PD, Rivadeneira F, et al. (2013) The Molecular Genetic Architecture of Self-Employment. PLoS ONE 8(4): e60542. doi:10.1371/journal.pone.0060542
Wallace H (2009) Big tobacco and the human genome: Driving the scientific bandwagon? Genomics, Society and Policy 5: 1-54.

Fakethrough! GMOs and the Capitulation of Science Journalism

October 21, 2015 By jrl in Feature Articles No Comments

by Jonathan Latham, PhD

Good journalism examines its sources critically, it takes nothing at face value, places its topics in a historical context, and it values above all the public interest. Such journalism is, most people agree, essential to any equitable and open system of government. These statements are, if anything, especially applicable to the science media. But while the media in general has recently taken much criticism, for trivialising news and other flaws, the science media has somehow escaped serious attention. This is unfortunate because no country in the world has a healthy science media.

This is science journalism?

According to the New York Times genetically engineered Xa21 rice was big news (Song et al 1995). In a 1995 article titled “Genetic Engineering Creates Rice Resistant to Destructive Blight”, journalist Sandra Blakeslee wrote it was:

“the first time that a disease-resistance gene has been put into rice”

Another biotech breakthrough

Blakeslee then quoted a senior figure, Gary Toenissen, deputy director of agricultural sciences at the Rockefeller Institute in New York, as saying it heralded

“a new era in plant genetics and resistance breeding”.

But eighteen years after that artice was written, the failure of these predictions is clear. No commercial GMO rice of any kind exists, nor has Xa21 or any similar gene for disease resistance been developed for commercial purposes.

Neither was the research as novel as the Times made it sound. Though Toenissen claimed it was:

“the first time that a disease-resistance gene has been put into rice”,

readers were not told that this gene was already in rice plants, because rice is where it came from (Song et al 1995). Blakeslee thus described neither a conceptual nor a commercial breakthrough. But it was certainly a very useful PR boost for plant biotechnology.

The high protein cassava that never was

“Cassava packs a protein punch with bean genes“ was the title of a 2011 New Scientist article portraying a new GMO cassava developed by Dr Claude Fauquet and colleagues of the Donald Danforth Center, St Louis, USA. The Center, which is largely funded by Monsanto, had produced a GMO cassava using money from the Bill and Melinda Gates Foundation. Thanks to the addition of a synthetic protein (called zeolin), the modified cassava was reported to contain protein levels elevated by a factor of four and apparently sufficient to greatly improve the nourishment of “hungry children” (Abhary et al 2011).

But despite the enthusiasm of New Scientist, SciDevNet, and many other media outlets, no such cassava is ever likely to feed the hungry of Africa. A subsequent investigation at the Danforth Center found that the “modified” cassava plants in their greenhouses had no zeolin gene in them. They were not transgenic at all, despite the fact that illustrations in the Abhary publication appeared to show they were. The Abhary paper was therefore retracted (this was later noted by New Scientist and SciDevNet).

According to Danforth President James Carrington, the main author (Abhary) had left the country along with vital information:

“The specific route by which these [plants] were produced we could not determine.“

As Retraction Watch discovered, that appears to have been the end of high-protein cassava:

“The Fauquet lab has not gone back to redo the study properly,” Carrington said, “because the Gates grant that funded the project ended a few years ago.”

The virus-resistant sweet potato that vanished

In 2001 US special envoy Dr Andrew Young flew into Kenya to launch a GM virus-resistant sweet potato developed with Monsanto by Dr. Florence Wambugu. According to Forbes magazine its yields were “astonishing”, fully twice that of standard sweet potatoes. Dr. Wambugu, at that time the Kenyan project leader, told the Toronto Globe and Mail that her “modified sweet potato, for example, can increase yields from four tonnes per hectare to 10 tonnes”, and Canada’s National Post called GMOs a technology to pull “the African continent out of decades of economic and social despair”.

These eulogies appeared despite the absence of any scientific confirmation of the claims.

Subsequently, in 2004, it was acknowledged in Kenyan newspapers and on the website GMWatch that Monsanto’s virus resistance was ineffective in field tests and an official report even claimed that “non-transgenic crops used as controls yielded much more per tuber compared to the transgenics”. Kenyan scientists involved in field testing were quoted as saying that:

“all lines tested were susceptible to viral attacks.” and:

“The transgenic material did not quite withstand virus challenge in the field.”

Even these negative reports, however, didn’t prevent this being cited once again in the US press, this time by celebrity scientist Pamela Ronald. Ronald wrote in the May 14th 2010 New York Times, that “virus-resistant sweet potatoes and high-yielding pearl millet are just a few examples of genetically engineered foods that could improve the lives of the poor around the globe.”

But in fact no GMO virus-resistant sweet potato varieties or scientific publications on this project have ever emerged from Kenya or elsewhere. Presumably the story reported by Kenyan newspapers, that yields were considerably less than “astonishing”, was the accurate one.

Edible vaccines prove fruitless

While successful nutrient-fortified crops and virus resistance traits are routinely developed in non-GMO plant breeding programmes, the creation of edible vaccines seemed to be a potentially unique opportunity for GMO crops:

“Tangible consumer benefits could turn the debate on genetically modified food,”

said Novartis CEO Daniel Vasella about the PR possibilities of edible vaccines.

The edible vaccine concept (variously, lettuce, tomatoes, bananas and potatoes) was once described by the Guardian in 2000 as “the most exciting area of biological science”, almost ready to “benefit millions of people in the developing world who could not afford western medicine.” Similar reports, spanning the years 2000-2005, appeared on PBS radio, in the New York Times, Scientific American (twice), and many other high profile media sources.

The articles typically focused on the theoretical advantages of edible vaccines (cheapness and ease of preservation) but neglected to discuss their downsides. These turn out to dwarf (as discussed at length here) the problems they are intended to solve. For example, most established vaccines are not edible. They are injected expressly because of they must bypass the saliva and stomach acids that would render them useless. At the same time, GMO plants that produce vaccines have often not grown well.

Yet other downsides of edible vaccines stem from the questionable wisdom of making living medical products that are visually indistinguishable from food; others from the problems associated with self-medication by untrained individuals. With plants grown in backyards how will individuals keep track of the dose they have received? How does one safeguard the food supply against contamination with vaccine genes? How should edible vaccine programmes overcome likely inconsistencies of dose due to natural variations in climate, season, and other factors?

An alternative edible vaccine scenario often put forward, in which the vaccine is grown in a regional centre and distributed from there, poses its own problems, such as how to transport the edible vaccine, which is a perishable foodstuff, separately from the rest of the food supply?

As a consequence of these unresolved issues no product has gone beyond the status of a small initial trial in people or animals and a 2011 scientific review concluded: “Edible transgenic plant vaccines have a long way to go before they will be ready for large-scale tests”. Yet even a large-scale test is not a final product.

Golden rice, the emperor of GMOs

Golden rice has the kind of PR to ensure it needs no introduction. The search term: “golden rice” + vitamin A generates 131,000 results on Google’s internet search engine (1).

Golden rice has genes inserted which produce in its endosperm modest quantities of beta-carotene, the precursor molecule of vitamin A. Golden rice has become the standard bearer for the humanitarian and beneficial use of a GMO and was famously featured on the cover of Time magazine as well as being the inspiration for eleven separate articles in the New York Times alone.

And as documented in a recent report from German NGO Testbiotech, the PR campaign for golden rice commandeered the phrase “crime against humanity”. Typical is The Hindu of India’s description of a recent visit to that country by Nobel prizewinner Richard J. Roberts (whose prize was unrelated to agriculture). The Hindu wrote:

“Describing the protest by “green” parties in Europe against GM crops as a “crime against humanity,” he particularly drew attention to the project to produce a GM rice variety for tackling the problem of vitamin A deficiency in India and other countries.” (The Hindu Dec 10th 2013)

The scientific reality of golden rice could hardly be more different to that implied by the heavy-handed PR. Prior to 2005, all such publicity pertained to golden rice 1 (GR1) (Ye et al. 2000). Amidst an almost total absence of journalistic scepticism, only Greenpeace and Vandana Shiva pointed out that the claims for it were false: GR1 was incapable of solving vitamin A deficiencies because the levels of beta-carotene were too low. This was disputed at the time, but it is a clear acknowledgement of GR1’s failure that Syngenta developed a new rice (GR2) (Paine et al 2005).

The current version of golden rice (GR2) has been the subject of just three scientific publications (Paine et al 2005; Tang et al 2009; Tang et al 2012). Nothing is known about its yield or agronomic characteristics and hardly any more is known about its efficacy or safety. GR2 has not been approved for commercial use or public consumption in any country. It is thus a product still in development, and indeed the transgenes in GR2 have only recently been crossed into the indica rice subspecies that most Asian people eat. There is thus what must surely be an unprecedented disparity between the number of articles generated around golden rice and its actual achievement, which currently stands at zero.

On occasion, the better parts of this press coverage have indicated that there are socio-cultural and technical obstacles to golden rice achieving genuine success in improving the nutrition of those with a Vitamin A deficiency. For a start golden rice will have to be widely grown (which means replacing many thousands of local varieties, or breeding the transgenes into each one); it must be made available to the poorest and most isolated (who actually need it); and it will have to overcome strong cultural preferences for white rice (by means not yet known). Moreover, in both scientific trials on humans (Tang et al 2009; Tang et al 2012) GR2 was immediately frozen at -70C to prevent loss of the apparently easily degraded beta-carotene (2). It was then fed to the study participants with 10% or more butter or oil (to ensure the availability of the fat necessary for absorption of beta-carotene). It perhaps doesn’t need saying that -70C storage capability and comparably fatty diets are not characteristics of those likely to be deficient in vitamin A.

Thus, between its technical flaws and its requirement for very large quantities of financial resources and political will (for plant breeding, distribution, etc.), it is highly probable that golden rice will never progress beyond a nice media story.

Indeed, following Greenpeace and Vandana Shiva, Michael Pollan proposed that golden rice (at that time GR1) was a “purely rhetorical technology”. Pollan’s scepticism proved fully correct, yet somehow only those three managed to disclose certain key facts. The entire science media failed, being apparently too enthralled by golden rice’s grenade-proof greenhouse in Switzerland.

But the main point, besides that New York Times readers may be the world’s most misinformed, is that golden rice is not alone, it is just one example among many of preliminary or doubtful research projects being inflated into positive global GMO news stories.

The ingredients missing from science journalism

These five ‘humanitarian’ GMO stories, often presented without doubts or caveats, are to be found literally by the thousands in the global news media. To adequately understand the full extent of this journalistic problem, however, it is necessary to briefly consider the specific intellectual and journalistic deficiencies they contain.

Firstly, these news stories offer robust evidence that science reporting is plagued by the same fundamental problem that pervades the rest of commercial journalism. It is the problem summed up by newspaper man Lord Northcliffe as:

“News is what people do not want you to print. All the rest is advertising.”

In biotech reporting, this defect is characterised firstly by missing context. Science journalism could at any point over the lifetime of biotechnology have asked some foundational public interest questions: Is the technology ready? Are the regulators competent? Why is it considered appropriate for industry to fund and conduct its own safety studies? What are the views of dissenting scientists? And many others. Yet only a tiny handful of professional science journalists have ever escaped the standard narrow framing around a specific product, which therefore leaves the reader imagining there are good answers to these questions. Michael Pollan’s excellent Playing God in the Garden is almost unique in this respect.

The second failing is that fakethrough reporting is simple old-time boosterism, whose art largely consists of leaving information out. Except it isn’t quite that innocuous. Because these products are not just the latest cell phone, the quantity of information left out is enormously large and hugely significant. As a non-technical example: when the reader is expected to believe that the agribusiness industry is operating a humanitarian enterprise, is it appropriate to leave out (or deny) the same industry’s historical record of intimidating farmers or manufacturing dangerous agricultural products and then denying and evading responsibility?

The authors of these articles may reasonably argue that in a short space some assumptions have to be made; but readers can hardly note omissions for themselves when the contradictory facts or viewpoints have never been reported, either in their own newspaper, or even in any commercial media.

For example, when the UN published a major report by hundreds of scientists proposing that industrial agriculture and GMOs were inappropriate solutions for agriculture and poverty, the New York Times never once mentioned it. Only years later did guest writers ever reference the IAASTD at “the paper of record”.

As a further example, in the typical fakethrough article, technical success is treated as a given. The presumption seems to be that biotech seed developers can introduce at will almost any trait they choose. What is never pointed out, however, is that all existing commercialised GMO crops are based on a very small number of conceptually simple modifications of conventionally-bred crops. These insect resistance and herbicide resistance traits are single genes and do not require complex understanding of, or deliberate interference with, existing biochemical pathways. In contrast, the new ‘humanitarian’ traits are (in often numerous ways) adventures into much less well understood areas of biology.

The gap between the global coverage and wide acclaim versus the ensuing reality in which two of these five ‘breakthroughs’ failed (or never existed) and the rest which never progressed, can now be understood. That vast gap is a precise and evidence-based barometer of the integrity of GMO news coverage worldwide and unquestionably it points to uniformly one-sided reporting of no value to readers. Its major use is to demonstrate the extent to which biotech journalism has been captured by agribusiness interests.

The journalistic rationale for celebrating putative future successes and discounting actual failures, was advanced by Gregg Easterbrook in a New York Times opinion piece about biofortified GMOs:

“The important thing to keep in mind is that the transgenic crops in the news today are just the first manifestations of a fundamental new idea. Much better versions are coming.” (New York Times Nov 19 1999)

In this view theoretical possibilities alone are what matter; real GMO failures are irrelevant. Which just happens to be how the industry sees the situation. It is as if reporters covering the nuclear power industry, rather than describing accidents, cost overruns, or cover-ups, were to focus on the humanitarian uses of nuclear-powered electricity (4).

Unfortunately, as these and other equally important stories show, this uncritical industry-pleasing approach guides almost all science journalism today (3).

Science journalists can do better, however. Michael Pollan (in Playing God..) ably dissected GMO regulatory gaps and later critiqued golden rice (nota bene: from outside the science pages), pointing out in the process golden rice’s $50 million PR budget. The website GMWatch.org frequently points out unheralded non-GMO breeding successes of comparable importance.

The way of total information control

These misreports of biotechnology are endlessly useful to the industry. Articles about supposed breakthroughs constitute the excuse for stern editorials in prestigious magazines decrying ‘irrational objections’ to GMOs. Supposed breakthroughs, like golden rice, can also represent a valuable opportunity to prize open specific foreign markets to GMOs. But the main benefit is less obvious but more fundamental.

Agribusiness is an industry whose financial success springs ultimately from building a technological treadmill and establishing monopoly control of agriculture. However, its products are invariably dispensable to agriculture and it struggles to develop new ones. Therefore, fakethroughs’ great value is to confirm, in the eyes of the world, the industry’s broad claims to be ethical, innovative, and essential to a sustainable future.

The fundamental driver behind scientific misreporting, therefore, is not intellectually lazy journalists (though they do help). It is that for agribusinesses and other powerful corporations everything is at stake in science journalism. Their reputations as essential and ethical organisations are daily at risk for the reason that it is in science that the hypocrisy is most self-evident: of financing climate change denial while espousing corporate responsibility, of insisting on due process while buying ones way into the political process (or bribing government officials), of attempting to undermine environmental and worker safety legislation, while describing oneself as a clean green global good citizen, and so on.

Imagine if the New York Times or NBC published, under appropriately scathing headlines, a full and detailed analysis of how GMO corporations perennially manipulate the scientific literature? And then Fox News reported the real story of how the FDA, advised by its own scientists that GMOs should receive close scrutiny, took the purely political and probably illegal decision to disregard that advice? And then each story was picked up by all the other radio, print and TV news outlets? Customers would rebel, political support would disappear (not least because this would discredit the official policy information democratic representatives receive). The agbiotech industry would probably collapse as a result. Consequently, it must make sure such a scenario never happens.

It is for just this reason that BASF, Coca-Cola, Merck, L’Oreal, Monsanto, Syngenta, Smith & Nephew, the Nuclear Industry Association and their competitors now support coordinated attempts to manage scientific news coverage in the form of the UK’s Science Media Centre. And now, having decided that this method of information control is effective, or maybe that the threat from the internet is sufficiently serious, they are adding some international offshoots.

The marketing of fakethroughs is important as a component of the general manipulation of the science media. But it is in turn only a part of the barely understood but vast web of influence by which the biotech industry meticulously orchestrates the perception of itself (and its products).

What is new today, and which wasn’t the case thirty years ago, is that individual industrial sectors such as the life science industry are nowadays sufficiently profitable, monopolistic, and global that they can and do coordinate the flow of information across three distinct but nevertheless interconnected domains of thought: the public domain (TV, radio, print), the scientific domain (peer-reviewed publications), and the policy domain (government reports and bureaucratic discussions).

A case in point occurred in 2007 when a hitherto sceptical EU parliament commissioned a comprehensive investigation and subsequent report (called BIO4EU) into the bold claims behind the new ‘knowledge-based bio-economy’.

The evidence base for these claims, as disclosed in the BIO4EU report, was dismayingly weak. Consequently, the life science industry mobilised its resources to ensure that the document text inflated the underlying data and the executive summary inflated the text to the extent that thousands of biotech jobs were converted into millions. The EU parliament was even told, in BIO4EUs summary, that the new bio-economy would

“break the link between economic growth and pressure on the environment”

(though this assertion was not mentioned or justified in the text) and that:

“It is said that money does not grow on trees, but more of our economic prosperity will be based on agricultural produce. Not only will farmers grow food for a larger population, but much of the economy will also be based on the raw materials they grow: new foods, biofuels, and biomaterials.”

Nothing in the underlying data collected for the report warranted these conclusions but concerted industry pressure on the EU institute that prepared the report averted a potential disaster for the industry. Obviously, the fakethrough data that was appearing in the print media must not be contradicted by policy-oriented research.

The EU parliamentarians were probably never made aware that their report was nothing but a giant fraud, but this case demonstrates the extent to which industry PR efforts extend, to use a military term, to full spectrum dominance of the total information environment. This is how it becomes possible for an industry image of ever increasing ambition to be separated from dull reality by a gulf so enormous that, were it to open, it would probably swallow the industry whole.

But in this the biotech industry is no different from almost every realm of economic activity. From the food industry to the mining industry, to the conduct of wars, very few people would support these activities in anything like their present form if they were truly informed. It follows that the underlying reason businesses operate as they do is that the modern press fails in its fundamental purpose. In 1822 James Madison wrote that:

“A popular government without popular information or the means of acquiring it, is but a prologue to a farce or a tragedy or perhaps both.”

This statement was surely intended to be understood literally, and now, two hundred years later, when we have entered fully into the state which James Madison envisaged, it is time to take Madison at his word and ask: Is it not possible that solving the great problems of our age: climate change, social injustice, and ecological sustainability, is as simple as creating an effective media? Or, to put it another way, can it be done without one?

Footnotes
1. Search conducted on Dec 10th 2013

2. The probable reason is that rice is dry while other sources of beta-carotene (e.g. spinach) are hydrated. The high water content probably normally protects the beta-carotene from oxidation.

3. Internalisation of industry PR is also obvious in the value-laden terminology with which journalists refer to biotechnology. The science media has failed to dissect the language that the industry uses, and which intentionally obscures what is actually being done. Genes are “added” as if biotechnology were a simple mathematics problem; organisms are genetically “engineered” as if they were not living systems; traits are described as “approved” even though (in the US) FDA merely consults, the USDA has a very narrow remit and the EPA often has no role at all.

4. There are intriguing parallels between nuclear power and genetic engineering. Both technologies are unnecessary (in the sense that both make a product (electricity, seeds) that was already being made, and less expensively), both are cumbersome and resource-intensive compared to their competitors, both are doubted by the wider public, and both are largely driven by an agenda their proponents attempt to keep hidden. In the case of nuclear power that agenda is to conceal activities associated with nuclear weapons and often to milk them for subsidies. For GMOs the concealed agenda is to exploit the intellectual property potential of transgenes to monopolise the seed supply and so to ultimately control agriculture.

But perhaps the most important parallel is that both are attempts to control within narrow parameters, and over extended time periods, highly complex and improperly understood systems (nuclear reactors and living organisms). In this respect the two technologies are probably unique among all human endeavours.

References
Abhary M, Siritunga D, Stevens G, Taylor N J, Fauquet CM (2011) Transgenic Biofortification of the Starchy Staple Cassava (Manihot esculenta) Generates a Novel Sink for Protein. PLoS One DOI: 10.1371/journal.pone.0016256
Paine J.A., Shipton, C.A., Chaggar, S., Howells, R.M., Kennedy, M.J., Vernon, G., Wright, S.Y., Hinchliffe, E., Adams, J.L., Silverstone, A.L. & Drake, R., (2005) Improving the nutritional value of Golden Rice through increased pro vitamin A content. Nature Biotechnology, 23: 482-487.
Tang G, J Qin, GG Dolnikowski, RM Russell, and MA Grusak (2009) Golden Rice is an effective source of vitamin A. Am J Clin Nutr 89: 6 1776-1783.
Tang G, Y Hu, S Yin, Y Wang, GE Dallal, MA Grusak, and RM Russell (2012) β-Carotene in Golden Rice is as good as β-carotene in oil at providing vitamin A to children. Am J Clin Nutr 96: 658-664.
Song WY, Wang G-L, Chen L-L, Kim H-S, Pi L-Y, Holsten T, et al (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21″. Science 270 (5243): 1804–6. December 1995. doi:10.1126/science.270.5243.1804.
Ye, X. et al. (2000) Engineering the provitamin A (b -carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287: 303–305.

How the Great Food War Will Be Won

October 21, 2015 By jrl in Feature Articles No Comments

By Jonathan Latham, PhD

By conventional wisdom it is excellent news. Researchers from Iowa have shown that organic farming methods can yield almost as highly as pesticide-intensive methods. Other researchers, from Berkeley, California, have reached a similar conclusion. Indeed, both findings met with a very enthusiastic reception. The enthusiasm is appropriate, but only if one misses a deep and fundamental point: that even to participate in such a conversation is to fall into a carefully laid trap.

The strategic centrepiece of Monsanto’s PR, and also that of just about every major commercial participant in the industrialised food system, is to focus on the promotion of one single overarching idea. The big idea that industrial producers in the food system want you to believe is that only they can produce enough for the future population (Peekhaus 2010). Thus non-industrial systems of farming, such as all those which use agroecological methods, or SRI, or are localised and family-oriented, or which use organic methods, or non-GMO seeds, cannot feed the world.

Dustbowl and soil erosion USA, 1935's

To be sure, agribusiness has other PR strategies. Agribusiness is “pro-science”, its opponents are “anti-science”, and so on. But the main plank has for decades been to create a cast-iron moral framing around the need to produce more food (Stone and Glover 2011).

Therefore, if you go to the websites of Monsanto and Cargill and Syngenta and Bayer, and their bedfellows: the US Farm Bureau, the UK National Farmers Union, and the American Soybean Association, and CropLife International, or The Bill and Melinda Gates Foundation, The Rockefeller Foundation, USAID, or the international research system (CGIAR), and now even NASA, they very early (if not instantaneously) raise the “urgent problem” of who will feed the expected global population of 9 or 10 billion in 2050.

Likewise, whenever these same organisations compose speeches or press releases, or videos, or make any pronouncement designed for policymakers or the populace, they devote precious space to the same urgent problem. It is even in their job advertisements. It is their Golden Fact and their universal calling card. And as far as neutrals are concerned it wins the food system debate hands down, because it says, if any other farming system cannot feed the world, it is irrelevant. Only agribusiness can do that.

The real food crisis is of overproduction

Yet this strategy has a disastrous foundational weakness. There is no global or regional shortage of food. There never has been and nor is there ever likely to be. India has a superabundance of food. South America is swamped in food. The US, Australia, New Zealand and Europe are swamped in food (e.g. Billen et al 2011). In Britain, like in many wealthy countries, nearly half of all row crop food production now goes to biofuels, which at bottom are an attempt to dispose of surplus agricultural products. China isn’t quite swamped but it still exports food (see Fig 1.); and it grows 30% of the world’s cotton. No foodpocalypse there either.

Of all the populous nations, Bangladesh comes closest to not being swamped in food. Its situation is complex. Its government says it is self-sufficient. The UN world Food Program says it is not, but the truth appears to be that Bangladeshi farmers do not produce the rice they could because prices are too low, because of persistent gluts (1).

Chinese net food exports

Even some establishment institutions will occasionally admit that the food shortage concept – now and in any reasonably conceivable future – is bankrupt. According to experts consulted by the World Bank Institute there is already sufficient food production for 14 billion people – more food than will ever be needed. The Golden Fact of agribusiness is a lie.

Truth restoration

So, if the agribusiness PR experts are correct that food crisis fears are pivotal to their industry, then it follows that those who oppose the industrialization of food and agriculture should make dismantling that lie their top priority.

Anyone who wants a sustainable, pesticide-free, or non-GMO food future, or who wants to swim in a healthy river or lake again, or wants to avoid climate chaos, needs to know all this. Anyone who would like to rebuild the rural economy or who appreciates cultural, biological, or agricultural diversity of any meaningful kind should take every possible opportunity to point out the evidence that refutes it. Granaries are bulging, crops are being burned as biofuels or dumped, prices are low, farmers are abandoning farming for slums and cities, all because of massive oversupply. Anyone could also point out that probably the least important criterion for growing food, is how much it yields. Even just to acknowledge crop yield, as an issue for anyone other than the individual farmer, is to reinforce the framing of the industry they oppose.

The project to fully industrialise global food production is far from complete, yet already it is responsible for most deforestation, most marine pollution, most coral reef destruction, much of greenhouse gas emissions, most habitat loss, most of the degradation of streams and rivers, most food insecurity, most immigration, most water depletion, massive human health problems, and so on (Foley et al 2005; Foley et al 2011). Therefore, it is not an exaggeration to say that if the industrialisation of food is not reversed our planet will be made unlivable for multi-cellular organisms. Our planet is becoming literally uninhabitable solely as a result of the social and ecological consequences of industrialising agriculture. All these problems are without even mentioning the trillions of dollars in annual externalised costs and subsidies (Pretty et al. 2000).

So, if one were to devise a strategy for the food movement, it would be this. The public already knows (mostly) that pesticides are dangerous. They also know that organic food is higher quality, and is far more environmentally friendly. It knows that GMOs should be labeled, are largely untested, and may be harmful. That is why the leaders of most major countries, including China, dine on organic food. The immense scale of the problems created by industrial agriculture should, of course, be understood better, but the main facts are hardly in dispute.

But what industry understands, and the food movement does not, is that what prevents total rejection of bland, industrialised, pesticide-laden, GMO food is the standard acceptance, especially in Western countries, of the overarching agribusiness argument that such food is necessary. It is necessary to feed the world.

But, if the food movement could show that famine is an empty threat then it would also have shown, by clear implication, that the chemical health risks and the ecological devastation that these technologies represent are what is unnecessary. The movement would have shown that pesticides and GMOs exist solely to extract profit from the food chain. They have no other purpose. Therefore, every project of the food movement should aim to spread the truth of oversupply, until mention of the Golden Fact invites ridicule and embarrassment rather than fear.

Divide and Confuse

Food campaigners might also consider that a strategy to combat the food scarcity myth can unite a potent mix of causes. Just as an understanding of food abundance destroys the argument for pesticide use and GMOs simultaneously, it also creates the potential for common ground within and between constituencies that do not currently associate much: health advocates, food system workers, climate campaigners, wildlife conservationists and international development campaigners. None of these constituencies inherently like chemical poisons, and they are hardly natural allies of agribusiness, but the pressure of the food crisis lie has driven many of them to ignore what could be the best solution to their mutual problems: small scale farming and pesticide-free agriculture. This is exactly what the companies intended.

So divisive has the Golden Fact been that some non-profits have entered into perverse partnerships with agribusiness and others support inadequate or positively fraudulent sustainability labels. Another consequence has been mass confusion over the observation that almost all the threats to the food supply (salinisation, water depletion, soil erosion, climate change and chemical pollution) come from the supposed solution–the industrialisation of food production. These contradictions are not real. When the smoke is blown away and the mirrors are taken down the choices within the food system become crystal clear. They fall broadly into two camps.

Vegetables growing

On the one side lie family farms and ecological methods. These support farmer and consumer health, resilience, financial and democratic independence, community, cultural and biological diversity, and long term sustainability. Opposing them is control of the food system by corporate agribusiness. Agribusiness domination leads invariantly to dependence, uniformity, poisoning and ecological degradation, inequality, land grabbing, and, not so far off, to climate chaos.

One is a vision, the other is a nightmare: in every single case where industrial agriculture is implemented it leaves landscapes progressively emptier of life. Eventually, the soil turns either into mud that washes into the rivers or into dust that blows away on the wind. Industrial agriculture has no long term future; it is ecological suicide. But for obvious reasons those who profit from it cannot allow all this to become broadly understood.  That is why the food scarcity lie is so fundamental to them. They absolutely depend on it, since it alone can camouflage the simplicity of the underlying issues.

Soil erosion, USA, 1935

Reverse PR?

Despite all this, the food and environmental movements have never seriously contested the reality of a food crisis. Perhaps that is because it is a narrative with a long history. As early as the 1940s the chemical and oil industries sent the Rockefeller Foundation to Mexico to “fix” agriculture there. Despite evidence to the contrary, the Rockefeller scientists derived a now-familiar narrative: Mexican agriculture was obviously gripped by a production deficit that could be fixed by “modern” agribusiness products (The Hungry World, 2010). This story later became the uncontested “truth” that legitimised the green revolution and still propels the proliferation of pesticides, fertilizers, GMOs and other agribusiness methods into every part of the globe.

Yet in the age of the internet it is no longer necessary to let an industry decide where the truth resides. It is possible to restore reality to the global discussion about food so that all potential production methods can have their merits fairly evaluated (IAASTD, 2007). Until this is done agribusiness and chemical industry solutions will always be the default winner, alternative agriculture will always be alternative, if it exists at all.

The evidence with which to contradict the lie is everywhere; but in an unequal and unjust system truth never speaks for itself. It is a specific task that requires a refusal to be intimidated by the torrents of official misinformation and a willingness to unembed oneself from the intellectual web of industry thinking. (That will often mean ordinary people acting alone.)

The task requires two things; the first is familiarity with the basic facts of the food system. Good starting points (apart from the links in this article) are Good Food for Everyone Forever by Colin Tudge or World Hunger: Twelve Myths by Joseph Collins, Peter Rosset and Frances Moore Lappe.

Power, lies, and consent

The second requirement is a shift in perception. The shift is to move beyond considering only physical goals, such as saving individual species, or specific political achievements, and to move towards considering the significance of the underlying mental state of the citizenry.

Companies and industries pay huge sums of money for public relations (PR). PR is predicated on the idea that all human behaviour is governed by belief systems. PR is therefore the discovery of the structure of those belief systems, mainly through focus groups, and the subsequent manipulation of those belief structures with respect to particular products or other goals.

Thus human reasoning, which asks questions like: Is it fair? What will the neighbours think? can be accessed and diverted to make individuals and groups act often against their own self-interests. Two important general rules are that it works best when people don’t know they are being influenced, and that it comes best from a “friendly” source. PR is therefore always concealed which creates the widespread misunderstanding that it is rare or ineffective.

Anyone who desires social change on a significant scale should seek to understand this, and its corollary, that the food crisis lie is far from the only lie. As philosopher Michel Foucault documented for madness and also criminality, many assertions constituting supposed “reality” are best understood as establishment fabrications. Those described by Foucault mostly have deep historical roots; but others, such as the genetic origin of disease, or the validity of animal experiments, are untruths of recent origin. The function of these fabrications is always social control. As Edward Bernays, the father of modern PR, long ago wrote:

“The conscious and intelligent manipulation of the organized habits and opinions of the masses is an important element in democratic society. Those who manipulate this unseen mechanism of society constitute an invisible government which is the true ruling power of our country.”

The possibility of manipulating habits and opinions, which he also called “the engineering of consent” was not an idle boast.

Foucault, who was concerned mostly with the power held by governments, considered that the fabrications he had identified were not conspiracies. They were emergent properties of power. Power and knowledge grow together in an intertwined and mutually supportive fashion. He argued that knowledge creates power but is also deferential to power and so is deformed by it. An example is when US newspapers decline to use the word “torture” for when torture is used by the US government. These newspapers and the US government are together doing what Foucault theorised. The US government gets to torture and gains power in the process while the public is simultaneously deceived and disempowered. In this way the preferred language of the powerful has historically and continuously evolved into the established public truth, to the disadvantage of the people.

Bernays, however, worked mainly for corporations. He knew, since some of them were his own ideas, that many of the more recent fabrications were not emergent properties but were intentionally planted.

The essential point, however, is to appreciate not only that companies and others deliberately engineer social change; but also that when they do so it begins with the reordering of the “reality” perceived by the people. The companies first create a reality (such as Mexican hunger) for which their desired change seems to the people either obvious, or beneficial, or natural. When it comes, the people therefore do not resist the solution, many welcome it.

The structure of “reality”

Dictators and revolutionaries provide an interesting lesson in this. The successful ones have achieved sometimes extraordinary power. As always, they have done so first by changing the opinions of the people. The dictator, like any corporation, must make the people want them. As a general rule, dictators do this by creating new and more compelling false realities on top of older ones.

Hitler, to take a familiar example, harnessed a newly synthesised idea (German nationalism) to a baseless scientific theory (of racial genetics) and welded this to pre-existing “realities” of elitism and impugned manhood (the loss of WWI). These ideas were instrumental in his rise to power. But the important lesson for social change is that none of the ideas used by him possessed (now or then) any objective or empirical reality. They were all fabrications. It is true Hitler also had secret money, bodyguards, and so on, but so did others. Only Hitler found the appropriate combination of concepts able to colonise the minds of enough German people.

But Hitler is not known now for being just another leader of Germany. He is infamous for two events, the holocaust and World War II. The same lessons apply. Millions fought and died for almost a decade in a struggle to assert ideas that could have been destroyed by the intellectual equivalent of a feather. But that is how powerful ideas are.

The lies told in more democratic societies are not so very different to those used by Hitler in the sense that the important ones have predictable properties that can be categorised and sorted. What the food scarcity lie has in common with Hitler’s use of race, and with myths of nationalism, or of modern terrorism, and many others, is the creation of a threat, in this case of famine and possible social breakdown. The creation of an internal or external threat is thus the first category of lies.

The second category recognises the necessity of “efficient government”. No government can issue direct and separate orders to all the people all the time. Nor can it possess the resources for physical enforcement of those orders. It must therefore find ways to cause the people to govern, order, and regiment themselves, in exquisite detail. Therefore, governments supply and support guiding principles in the form of artificial unifying aspirations, such as “progress” or “civilisation”. Typically, they also strongly encourage the desirability of being “normal”; and especially they reinforce elitism (follow the leader), and so on.

Another structural category follows from the recognition that the effective operation of power over others, unless it is based on pure physical force or intimidation, usually requires an authoritative source of ostensibly unbiased knowledge. The population must be “convinced” by an unimpeachable third party. This function is typically fulfilled by either organised religion or by organised science. Scientific or religious institutions thus legitimate the ideas (progress, hierarchy, normality, inequality, etc.) of the rulers. These sources conceal the use of power because they combine the appearance of authority, independence and disinterestedness. These qualities are all or partly fictions.

Another category are fabrications intended to foster dependence on the state and the formal economy. These aim to undermine the ancient dependence of individuals on the land and each other, and transfer that dependence to the state. Thus the worship of competition, the exaggeration of gender differences, and genetic determinism (the theory that your health, personality, and success derive only from within) are examples of fabrications that sow enmity and isolation among the population.

Another important category, which include the myths of papal infallibility, or scientific and journalistic objectivity, exist to reinforce the power of authority itself. These fabrications act to bolster the influence of other myths.

The above list is not exhaustive, but it serves to introduce the idea that the organising of detailed control over populations of millions, achieved mostly without resorting to any physical force, requires the establishing and perpetual reinforcement of multiple interlocking untruths. This itself has important implications.

The first and most important implication is that if the lies and fabrications exist to concentrate and exercise power over others (and then conceal its use), then it also follows that genuinely beneficial and humanitarian goals such as harmony, justice, and equity, require retrieval of the truth and the goals will follow naturally from that retrieval.

The task of anyone who wants harmony, justice, peace, etc to prevail therefore becomes primarily to free the people from believing in lies and thus allowing them to attain mastery over their own minds. At that point they will know their own true needs and desires; they will no longer “want” to be oppressed or exploited.

The second implication of this entwining of knowledge with power is that, when properly understood, goals of harmony, understanding, health, diversity, justice, sustainability, opportunity, etc., are not contradictory or mutually exclusive. Rather, they are necessarily interconnected.

The third implication is that an empire built on lies is much more vulnerable than it seems. It can rapidly unravel.

Given that resources are limited, the problems of achieving broad social justice, of providing for the people, and of restoring environmental harms consequently become that of discerning which of the lies (since there are many) are most in need of exposing; and perhaps in what order.

Conclusion

Thus the necessary shift in perception is to see that, as in most wars, the crucial struggle in the food war is the one inside people’s heads. And that the great food war will be won by the side that understands that and uses it best.

This food war can be won by either side. The natural advantages of the grassroots in this realm are many. They include the power of the internet–which represents a historic opportunity to connect with others; second, that it takes a lot less effort to assert the truth than it does to build a lie-many people only need to hear the truth once; and thirdly, that in this particular battle the non-profit public-interest side doesn’t necessarily need a bigger megaphone because, unlike the industry, they are (broadly) trusted by the public.

Consequently, it is perfectly possible that a lie that took several powerful industries many decades to build up could be dismantled in months. It is necessary only to unleash the power of the truth and to constantly remember the hidden power of the people: that all the effort industries put into misleading them is an accurate acknowledgement of the potential of that power.

There are many writers and NGOs, such as Pesticides Action Network, IATP, the EWG, the Organic Consumers Association, the Center for Food Safety, and others, who are aligned with the grassroots, and who are doing a good and necessary job of explaining the problems and costs of industrial agriculture. But these arguments have so far proven inadequate. Agribusiness knows why that is.

But by combining these arguments with a refutation of the food crisis they can help destroy the industrial model of agriculture forever. And when that happens many of our worst global problems, from climate change and rainforest destruction down, will become either manageable or even negligible.

It is all in the mind.

Footnotes
(1) Thanks to Prof J Duxbury, Cornell University.

References
Billen et al (2011) Localising the Nitrogen Imprint of the Paris Food Supply: the Potential of Organic Farming and Changes in Human Diet. Biogeosciences Discuss 8: 10979-11002.

Cullather, N. (2010) The Hungry World: America’s Cold War Battle against Poverty in Asia (Harvard)

Foley et al (2005) Global Consequences of Land use. Science 309: 570.

Foley et al (2011) Solutions for a cultivated planet. Nature 478: 337–342.

Peekhaus W. (2010) Monsanto Discovers New Social Media. International Journal of Communication 4: 955–976.

Pretty J. et al., (2000) An Assessment of the Total External Costs of UK Agriculture Agricultural Systems 65: 113-136.

Stone GD and Glover D. (2011) Genetically modified crops and the ‘food crisis’: discourse and material impacts. Development in Practice 21: DOI: 10.1080/09614524.2011.562876

Monsanto’s Worst Fear May Be Coming True

October 21, 2015 By jrl in Feature Articles No Comments

by Jonathan Latham, PhD
The decision of the Chipotle restaurant chain to make its product lines GMO-free is not most people’s idea of a world-historic event. Especially since Chipotle, by US standards, is not a huge operation. A clear sign that the move is significant, however, is that Chipotle’s decision was met with a tidal-wave of establishment media abuse. Chipotle has been called irresponsible, anti-science, irrational, and much more by the Washington Post, Time Magazine, the Chicago Tribune, the LA Times, and many others. A business deciding to give consumers what they want was surely never so contentious.

The media lynching of Chipotle has an explanation that is important to the future of GMOs. The cause of it is that there has long been an incipient crack in the solid public front that the food industry has presented on the GMO issue. The crack originates from the fact that while agribusiness sees GMOs as central to their business future, the brand-oriented and customer-sensitive ends of the food supply chain do not.

Chipotle Mexican Grill

The brands who sell to the public, such as Nestle, Coca-Cola, Kraft, etc., are therefore much less committed to GMOs. They have gone along with their use, probably because they wish to maintain good relations with agribusiness, who are their allies and their suppliers. Possibly also they see a potential for novel products in a GMO future.

However, over the last five years, as the reputation of GMOs has come under increasing pressure in the US, the cost to food brands of ignoring the growing consumer demand for GMO-free products has increased. They might not say so in public, but the sellers of top brands have little incentive to take the flack for selling GMOs.

From this perspective, the significance of the Chipotle move becomes clear. If Chipotle can gain market share and prestige, or charge higher prices, from selling non-GMO products and give (especially young) consumers what they want, it puts traditional vendors of fast and processed food products in an invidious position. Kraft and MacDonalds, and their traditional rivals can hardly be left on the sidelines selling outmoded products to a shrinking market. They will not last long.

McDonald’s already appears to be in trouble, and it too sees the solution as moving to more up-market and healthier products. For these much bigger players, a race to match Chipotle and get GMOs out of their product lines, is a strong possibility. That may not be so easy, in the short term, but for agribusiness titans who have backed GMOs, like Monsanto, Dupont, Bayer and Syngenta; a race to be GMO-free is the ultimate nightmare scenario.

Until Chipotle’s announcement, such considerations were all behind the scenes. But all of a sudden this split has spilled out into the food media. On May 8th, Hain Celestial told The Food Navigator that:

“We sell organic products…gluten-free products and…natural products. [But] where the big, big demand is, is GMO-free.”

According to the article, unlike Heinz, Kraft, and many others, Hain Celestial is actively seeking to meet this demand. Within the food industry, important decisions, for and against GMOs, are taking place.

Why the pressure to remove GMOs will grow

The other factor in all this turmoil is that the GMO technology wheel has not stopped turning. New GMO products are coming on stream that will likely make crop biotechnology even less popular than it is now. This will further ramp up the pressure on brands and stores to go GMO-free. There are several contributory factors.

The first issue follows from the recent US approvals of GMO crops resistant to the herbicides 2,4-D and Dicamba. These traits are billed as replacements for Roundup-resistant traits whose effectiveness has declined due to the spread of weeds resistant to Roundup (Glyphosate).

The causes of the problem, however, lie in the technology itself. The introduction of Roundup-resistant traits in corn and soybeans led to increasing Roundup use by farmers (Benbrook 2012). Increasing Roundup use led to weed resistance, which led to further Roundup use, as farmers increased applications and dosages. This translated into escalated ecological damage and increasing residue levels in food. Roundup is now found in GMO soybeans intended for food use at levels that even Monsanto used to call “extreme” (Bøhn et al. 2014).

The two new herbicide-resistance traits are set to recapitulate this same story of increasing agrochemical use. But they will also amplify it significantly,

The specifics are worth considering. First, the spraying of 2,4-D and Dicamba on the newer herbicide-resistant crops will not eliminate the need for Roundup, whose use will not decline (see Figure).

Predicted herbicide use to 2025 (Mortensen et al 2012)

That is because, unlike Roundup, neither 2,4-D nor Dicamba are broad-spectrum herbicides. They will have to be sprayed together with Roundup, or with each other (or all of them together) to kill all weeds. This vital fact has not been widely appreciated.

Confirmation comes from the companies themselves. Monsanto is stacking (i.e. combining) Dicamba resistance with Roundup resistance in its Xtend crops and Dow is stacking 2,4-D resistance with Roundup resistance in its Enlist range. (Notably, resistance to other herbicides, such as glufosinate, are being stacked in all these GMO crops too.)

The second issue is that the combined spraying of 2,4-D and Dicamba and Roundup, will only temporarily ease the weed resistance issues faced by farmers. In the medium and longer terms, they will compound the problems. That is because new herbicide-resistant weeds will surely evolve. In fact, Dicamba-resistant and 2,4-D-resistant weeds already exist. Their spread, and the evolution of new ones, can be guaranteed (Mortensen et al 2012). This will bring greater profits for herbicide manufacturers, but it will also bring greater PR problems for GMOs and the food industry. GMO soybeans and corn will likely soon have “extreme levels” of at least three different herbicides, all of them with dubious safety records (Schinasi and Leon 2014).

The first time round, Monsanto and Syngenta’s PR snow-jobs successfully obscured this, not just from the general public, but even within agronomy. But it is unlikely they will be able to do so a second time. 2,4-D and Dicamba-resistant GMOs are thus a PR disaster waiting to happen.

A pipeline full of problems: risk and perception

The longer term problem for GMOs is that, despite extravagant claims, their product pipeline is not bulging with promising ideas. Mostly, it is more of the same: herbicide resistance and insect resistance.

The most revolutionary and innovative part of that pipeline is a technology and not a trait. Many products in the GMO pipeline are made using RNA interference technologies that rely on double-stranded RNAs (dsRNAs). dsRNA is a technology with two problems. One is that products made with it (such as the “Arctic” Apple, the “Innate” Potato, and Monsanto’s “Vistive Gold” Soybeans) are unproven in the field. Like its vanguard, a Brazilian virus-resistant bean, they may never work under actual farming conditions.

But if they do work, there is a clear problem with their safety which is explained in detail here (pdf).

In outline, the problem is this: the long dsRNA molecules needed for RNA interference were rejected long ago as being too hazardous for routine medical use (Anonymous, 1969). The scientific literature even calls them “toxins”, as in this paper title from 1969:

Absher M., and Stinebring W. (1969) Toxic properties of a synthetic double-stranded RNA. Nature 223: 715-717. (not online)

As further evidence of this, long dsRNAs are now used in medicine to cause autoimmune disorders in mice, in order to study these disorders (Okada et al 2005).

The Absher and Stinebring paper comes from a body of research built up many years ago, but its essential findings have been confirmed and extended by more modern research. We now know why dsRNAs cause harm. They trigger destructive anti-viral defence pathways in mammals and other vertebrates and there is a field of specialist research devoted to showing precisely how this damages individual cells, whole tissues, and results in auto-immune disease in mice (Karpala et al. 2005).

The conclusion therefore, is that dsRNAs that are apparently indistinguishable from those produced in, for example, the Arctic apple and Monsanto’s Vistive Gold Soybean, have strong negative effects on vertebrate animals (but not plants). These vertebrate effects are found even at low doses. Consumers are vertebrate animals. They may not appreciate the thought that their healthy fats and forever apples also contain proven toxins. And on a business front, consumer brands will not relish defending dsRNA technology once they understand the reality. They may not wish to find themselves defending the indefensible.

The bottom line is this. Either dsRNAs will sicken or kill people, or, they will give opponents of biotechnology plenty of ammunition. The scientific evidence, as it currently stands, suggests they will do both. dsRNAs, therefore, are a potentially huge liability.

The last pipeline problem stems from the first two. The agbiotech industry has long held out the prospect of “consumer benefits” from GMOs. Consumer benefits (in the case of food) are most likely to be health benefits (improved nutrition, altered fat composition, etc.). The problem is that the demographic of health-conscious consumers no doubt overlaps significantly with the demographic of those most wary of GMOs. Show a consumer a “healthy GMO” and they are likely to show you an oxymoron. The likely health market in the US for customers willing to pay more for a GMO has probably evaporated in the last few years as GMOs have become a hot public issue.

The end-game for GMOs?

The traditional chemical industry approach to such a problem is a familiar repertoire of intimidation and public relations. Fifty years ago, the chemical industry outwitted and outmanoeuvered environmentalists after the death of Rachel Carson (see the books Toxic Sludge is Good for You and Trust Us We’re Experts). But that was before email, open access scientific publication, and the internet. Monsanto and its allies have steadily lost ground in a world of peer-to-peer communication. GMOs have become a liability, despite their best efforts.

The historic situation is this: in any country, public acceptance of GMOs has always been based on lack of awareness of their existence. Once that ignorance evaporates and the scientific and social realities start to be discussed, ignorance cannot be reinstated. From then on the situation moves into a different, and much more difficult phase for the defenders of GMOs.

Nevertheless, in the US, those defenders have not yet given up. Anyone who keeps up with GMOs in the media knows that the public is being subjected to an unrelenting and concerted global blitzkrieg.

Pro-GMO advocates and paid-for journalists, presumably financed by the life-science industry, sometimes fronted by non-profits such as the Bill and Melinda Gates Foundation, are being given acres of prominent space to make their case. Liberal media outlets such as the New York Times, the National Geographic, The New Yorker, Grist magazine, the Observer newspaper, and any others who will have them (which is most) have been deployed to spread its memes. Cornell University has meanwhile received a $5.6 million grant by the Gates Foundation to “depolarize” negative GMO publicity.

But so far there is little sign that the growth of anti-GMO sentiment in Monsanto’s home (US) market can be halted. The decision by Chipotle is certainly not an indication of faith that it can.

For Monsanto and GMOs the situation suddenly looks ominous. Chipotle may well represent the beginnings of a market swing of historic proportions. GMOs may be relegated to cattle-feed status, or even oblivion, in the USA. And if GMOs fail in the US, they are likely to fail elsewhere.

GMO roll-outs in other countries have relied on three things: the deep pockets of agribusinesses based in the United States, their political connections, and the notion that GMOs represent “progress”. If those three disappear in the United States, the power to force open foreign markets will disappear too. The GMO era might suddenly be over.

Endnote: The report by Jonathan Latham and Allison Wilson on RNA interference and dsRNAs in GMO crops is downloadable from here. Accompanying Tables are here.

References
Anonymous (1969) Interferon inducers with side effects. Nature 223: 666-667.
Bøhn, T., Cuhra, M., Traavik, T., Sanden, M., Fagan, J. and Primicerio, R. 2014. Compositional differences in soybeans on the market: Glyphosate accumulates in Roundup Ready GM soybeans. Food Chemistry 153: 207-215.
Okada C., Akbar S.M.F., Horiike N., and Onji M. (2005) Early development of primary biliary cirrhosis in female C57BL/6 mice because of poly I:C administration. Liver International 25: 595-603.
Karpala A.J., Doran T.J., and Bean A.G.D. (2005) Immune responses to dsRNA: Implications for gene silencing technologies. Immunology and cell biology 83: 211–216.
Mortensen, David A., J. Franklin Egan, Bruce D. Maxwell, Matthew R. Ryan and Richard G. Smith (2012) Navigating a Critical Juncture for Sustainable Weed Management. BioScience 62: 75-84.
Schinasi L and Maria E. Leon ME (2014) Non-Hodgkin Lymphoma and Occupational Exposure to Agricultural Pesticide Chemical Groups and Active Ingredients: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 11: 4449-4527.

New Report Links Food, Climate and Agricultural Policies

October 21, 2015 By jrl in News Articles No Comments

Jonathan Latham and Allison Wilson

Understanding of the ‘problem’ of agriculture took a giant step forward in 2007 with publication of the UN IAASTD report. This report, which was as important for agriculture as the IPCC reports have been for the climate, pinpointed a move to ecology-based agriculture as the key to meeting many other fundamental needs such as clean water, safe food and sustainability. What the IAASTD didn’t do, at least directly however, was to focus on politics, especially the obstacles to progress in improving agriculture.

A new report, The Wheel of Life:  Food, Climate, Human Rights and the Economy (Sept. 2011), released by the Center for Food Safety (CFS) and the Heinrich Böll Stiftung Foundation, usefully complements this deficit. It does this in part by drawing attention explicitly to some common myths on which support for conventional production-oriented solutions for agriculture are based. Among these myths are that hugely enhanced food production will be required in the future, that biotech (GMO) seeds are needed to solve hunger and mitigate climate change, and that traditional agriculture is wasteful and inefficient.

The Wheel then examines how major current crises—hunger, climate change, and ecological degradation—are deeply interlinked. Despite the evident linkages, however, government and international institutions typically address these issues as if they were disconnected from one another. Thus the IPCC, for example, still has not adequately considered agriculture as a contributor to climate change. The consequence of this disconnect, The Wheel of Life points out, is that many policies do not tackle root causes and therefore negative global trends have tended to intensify.

Confronting global hunger is one example identified in the report. Leaders on each end of the political spectrum uniformly assert that economic growth is needed to address hunger and poverty. Yet economic growth is typically conducted via industrial activities that contribute to climate change, which in turn, negatively impacts the ability to grow food.

Similarly, in addition to their effects on climate change, economic and trade policies can spur growth for a few while undermining the ability of small-scale farmers and rural communities to provide food for local populations. The Wheel of Life suggests these complex interactions help explain why, even though economic growth indicators have risen in many countries over the last decade, hunger rates have increased too, especially within the last several years.

To successfully remedy social injustices, climate change, and agriculture, The Wheel of Life argues that political action is needed that incorporates social and ecological needs. And it notes that while governments dither on climate change and agricultural reform, agribusiness is already positioning its products as the preferred solutions. The strategy proposed by The Wheel of Life is to incorporate civil society input into political and economic discussions. Some countries, such as Germany, already have productive dialogues with civil society, but in the US and Britain, for example, interactions are negligible. To encourage cooperation the report also provides a list of civil society organisations with compatible aims in the areas of climate change, agriculture, environment, human rights, women’s rights, and migration.

The Wheel concludes that lasting solutions to hunger and other major crises of our day must, above all, be guided by fundamentals of ecology.

“Policies and practices must begin with the ecological imperative in order to ensure authentic security and stability on all fronts—food, water, livelihoods and jobs, climate, energy, and economic,” writes report author Debbie Barker, international director at the Center for Food Safety.  “In turn this engenders equity, social justice, and diverse cultures.”

Psychiatrists plead to continue funding of genetic approaches to disease

October 21, 2015 By jrl in News Articles No Comments

Jonathan Latham

Ninety six leading psychiatric geneticists have publicly requested their scientific funding agencies not to abandon the search for genetic links to mental health. In a letter, published Aug 9th in the journal Molecular Psychiatry, they argue that the ongoing failure to uncover significant disease genes for mental illness does not indicate that current research is fundamentally misdirected.

Instead, they believe that current experimental designs lack sufficient statistical power. And it is a defect they want remedied by further studies. “Since family history is a major risk factor” they write “we urge the major funding bodies worldwide to continue to support GWAS (Genome-Wide Association Studies) as a major investigative tool’.

The unprecedented letter is in response to growing scepticism of the search for genetic origins of disease. Criticism of the GWAS approach has been particularly severe since its results, especially in psychiatry, have almost entirely failed to support the idea that human diseases, including mental disorders, have a strong genetic basis. The biggest find so far is the ApoE4 variant that contributes to Alzheimer’s disease.

These criticisms have become steadily bolder. The most recent include a paper in JAMA documenting the non-replicability of many GWAS findings and a paper by psychologist and behavioural geneticist Eric Turkheimer of the University of Virginia (Ioannidis and Panagiotou 2011; Turkheimer 2011). Writing in the International Journal of Epidemiology Turkheimer proposes that “the molecular genetic project has foundered” .

Patrick Sullivan, who coordinated the Molecular Psychiatry letter, disagrees. While he conceded in a telephone interview that “common (genetic) variants of strong effect are not there. We have now proved that”, he still believes the genetic approach is the right one. “In one hundred years of searching for explanations of mental health very little has worked. GWAS at least has given some results.”

It is not only the theory of genetic determination of mental health that is finding itself challenged, however. Even when potential disease genes are found, they are not necessarily useful, points out Claudia Chaufan of the University of California (San Francisco). “In the case of diabetes, while genes may be of interest to researchers, studies show that whether you have a gene or not you still should get the same treatment” she says. Patrick Sullivan, however, believes that criticism to be unfair. “To do more meaningful clinical work on schizophrenia we need to understand it”.

Jay Joseph, author of The Gene Illusion, remains unconvinced by the letter. He also finds it puzzling that the authors chose not to cite evidence from twin studies to argue for a strong genetic component to mental health. “Almost everyone recognizes that family histories cannot disentangle potential genetic and environmental influences” says Joseph. Possibly the authors believe that twin studies, which have always been touted as the best evidence that genetics has a key role in disease causation, no longer have the credibility they once did.

David Cohen of the Robert Stempel School of Public Health at Florida International University, considers that researchers need to take a step back even further. For schizophrenia, which is the disease the authors of the Molecular Psychiatry letter chose to make their case, he wrote in an email, “schizophrenia remains neither sufficiently well defined nor properly circumscribed for adequate research into its genetic correlates.” Symptomatic of this, he points out, is that “the current DSM-V proposals recommend flatly eliminating the five schizophrenia subtypes that have been part of the conception of schizophrenia for at least 60 years”.

The letter to Molecular Psychiatry indicates that researchers perceive a substantial challenge to basic genetic research in mental health. That same challenge is also faced by researchers who work on diseases, such as diabetes and cancer, that can be measured as objective physiological disturbances but who have nevertheless had no more success than mental health researchers in identifying disease susceptibility genes. These researchers will be watching the fate of mental health genetics with considerable interest.

References
Ioannidis JPA and Panagiotou OA (2011) Comparison of Effect Sizes Associated With Biomarkers Reported in Highly Cited Individual Articles and in Subsequent Meta-analyses. J. American Medical Association 305(21):2200-2210
Joseph J (2004) The Gene Illusion. Algora Publishing
Sullivan P et al (2011) Don’t give up on GWAS. doi:10.1038/mp.2011.94
Turkheimer E (2011) Commentary: Variation and Causation in the Environment and Genome.
International Journal of Epidemiology 40: 598-601.

The Experiment Is on Us: Science of Animal Testing Thrown into Doubt

October 21, 2015 By jrl in News Articles No Comments

by Pat Dutt and Jonathan Latham, PhD

New scientific research has cast grave doubt on the safety testing of hundreds of thousands of consumer products, food additives and industrial chemicals.

Everyday products, from soft drinks and baby foods, to paints, gardening products, cosmetics and shampoos, contain numerous synthetic chemicals as preservatives, dyes, active ingredients, or as contaminants. Official assurances of the safety of these chemicals are based largely on animal experiments that use rabbits, mice, rats and dogs. But new results from a consortium of researchers and published in the Proceedings of the National Academy of Sciences suggest such assurances may be worthless (Seok et al. 2013).

The results of these experiments challenge the longstanding scientific presumption holding that animal experiments are of direct relevance to humans. For that reason they potentially invalidate the entire body of safety information that has been built up to distinguish safe chemicals from unsafe ones. The new results arise from basic medical research, which itself rests heavily on the idea that treatments can be developed in animals and transferred to humans.

Laboratory Rat

The research originated when investigators noted that in their medical specialism of inflammatory disease (which includes diabetes, asthma and arthritis), drugs developed using mice have to date had a 100% failure rate in almost 150 clinical trials on humans.

According to Kristie Sullivan, Director of Regulatory Testing Issues at the Physicians Committee for Responsible Medicine (PCRM), this is not unusual “about 90% of all pharmaceuticals tested for safety in animals fail to reach the market, or are quickly pulled from the market”.

Wanting to understand why this might be so, the consortium decided to test the effects of various treatments that lead to inflammation, and systematically compare results between mice and humans. This postulated correlation across different animal species is sometimes known as the concordance assumption.

In a first set of experiments the researchers looked at acute inflammation in mice brought on by various stimuli. These stimuli were bacterial toxins (endotoxaemia), trauma, and burns. To measure responses the authors quantified positive or negative changes in gene activity for thousands of individual genes. The researchers found that changes in activity of a particular mouse gene after treatment typically failed to predict changes in activity in the closest related human gene. This was not the expected result. If humans and mice are meaningfully similar (i.e. concordant) then gene activity changes in mice should have closely resembled those in humans after a similar challenge. But they did not.

In further experiments, the researchers identified another difference. While humans responded with similar patterns of gene changes to each of the three different challenges (trauma, burns, and endotoxaemia), mice did not. The three treatments in mice each resulted in a distinct set of gene activity changes. This confirmed the initial results in the sense that mice and humans responded differently. It also implied that the differences in gene response between mice and humans are attributable not so much to a lot of detailed ‘noise’ but to fundamental differences in the physiology of mice and humans in dealing with these challenges.

Next, the researchers examined the activity of specific biological signaling pathways after similar treatments. These too were highly divergent between mice and humans. Surprised by the consistently poor correlations between the two species, the authors then tested other human/mouse models of inflammatory diseases. Again, the similarity between mice and humans was low.

In summary, repeated experiments confirmed that, when it comes to inflammation, mice and humans have little in common, a finding important enough in itself given the prevalence of inflammation-related diseases in humans. These include allergies, celiac disease, asthma, rheumatoid arthritis, and autoimmune diseases.

Perhaps these results should not be a surprise. Concordance has been questioned by numerous researchers, some of whom have noted that mice are separated from humans by 120 million years of evolutionary change (Stoloff 1992; Greek and Swingle Greek, 2003; Mestas and Hughes, 2004; Knight, 2007). And, unlike humans, mice also suffer from different diseases, lack a gall bladder, have no menstrual cycle, have multiple births, differ in immune systems, lifespan and size, to name only a few dissimilarities.

Thus the Seok study is not the first to conclude that mice are poor models for human disease, but it is notable for being by far the most comprehensive. Combined with results of previous experiments, its conclusions suggest researchers should expect that mouse, and probably other animal testing, is of little use in advancing the treatment of human illnesses, including heart disease and cancer.

In other words, the public is probably being badly served by much of the money spent on medical research. According to PCRM’s Kristie Sullivan, “the National Institutes of Health is giving researchers billions of dollars every year for research on animals”. While missing out on potential cures, the public is also likely being exposed to dangerous or ineffective pharmaceuticals. Animal testing nearly prevented the approval of valuable drugs such as penicillin and subsequent antibiotics, but it did not prevent the thalidomide disaster of the 50s and 60s (Greek and Swingle Greek, 2003).

This finding of non-concordance need not mean the end of medical research. It could even herald a more promising and scientific era. Sullivan believes that medical researchers “simply take for granted that animal models are useful” even though other, and possibly better, techniques for studying human disease are available. These include greater emphasis on human clinical observation and making better use of cell cultures for research.

But wasteful and unproductive medical research is arguably a sideshow besides the misplaced confidence in the safety testing of environmental and household chemicals. While medical failures affect the unwell, chemical toxins have potential repercussions for everyone.

If animals are not useful predictors of important disease responses in humans it is unlikely they are useful as test subjects for toxicological safety. In other words, lack of concordance means that the synthetic chemicals that are found in industrial products, incorporated into food, and otherwise spread throughout the environment, are essentially untested. The regulatory process through which they passed was never a scientifically validated and evidence-based system, but now the evidence shows it to have been functioning as a system of random elimination. “We are not protecting humans” says Kristie Sullivan, noting that “even a National Academy study agrees that many toxicological tests are not human-relevant.”

There are potential alternative toxicological tests, but despite multi-billion dollar grants, and even a human on a chip, the science is still incomplete. Michael Hansen, Senior Scientist at the Consumers Union, has been contributing to recent discussions over replacing animals for the purposes of regulatory toxicology. He acknowledges that “we should be moving towards in-vitro cell-based models” for chemical risk assessments. But how this can be done is not yet clear. Hansen points out that not only is “there a technical problem of how to incorporate them into an overall risk assessment”, but also that “in-vitro alternatives have yet to be validated”. Nevertheless, he still believes specific uses for animal research remain: “for carcinogenicity, for example, mice are appropriate models”.

An interesting question, when an estimated 100 million mice are sacrificed each year for medical research and in toxicology, is why it took so long to test this fundamental assumption. The answer is that it has been tested before, though not nearly as rigorously as it could have been. And the results have, in the view of many, not supported the idea that animals reliably model human physiology (Knight, 2007; Dressman, 2007).

A different kind of answer is that animal research is now big business. One genetically engineered mouse can cost $100,000 while a mouse treadmill can set taxpayers back $9,600 (Greek and Swingle Greek, 2003). For medical researchers, animal research offers a steady income and a successful career pathway regardless of whether, as in the field of inflammation, experiments deliver practical benefits to patients. These are just some of the entrenched interests maintaining the animal testing system. Other prominent beneficiaries include the food and chemical industries which profit from the public perception of safety derived from animal testing.

Going back to the time of ancient Greece, we have used animals to teach us about the human body; however, it was not until 1937 — after 100 people died from taking Elixir Sulfanilamide — that Congress mandated drug safety testing on animals. Since then, literally billions of mice and other mammals have been sacrificed in a Faustian bargain—that their suffering was preventing human experimentation. Seemingly, that calculation was misguided from the start.

The failure of animal experiments to predict human responses and the inability of alternatives to replace them leaves few options. Individuals can to a limited extent protect themselves through avoiding packaged, processed and non-organic food and buying goods made from traditional materials. But ultimately, chemical exposure and chemical pollution are a collective responsibility.

References

Dressman HK et al, 2007. Gene expression signatures that predict radiation exposure in mice and humans. PLoS Med 4:4.
Greek CR, Swingle Greek, J (2003). Specious science: Why Experiments on Animals Harm Humans.  The Continuum International Publishing Group, Ltd, London.
Knight A (2007) Systematic reviews of animal experiments demonstrate poor human clinical and toxicological utility. ATLA 35: 641-659.
Mestas, J and Hughes, CCW, (2004) Of mice and not men: differences between mouse and human immunology, The Journal of Immunology, 172: 5.
Seok, J Shaw Warren, H et al, (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. PNAS February 11, 2013 online edition.
Stoloff L (1992) An analysis of the 1987 list of IARC-identified human carcinogens and the correlated animal studies. Regulatory Toxicology and Pharmacology 15: 10–13

Postscript (added May 8th)

Readers may find it useful to get an idea of the prior debate over concordance. Below are some of the scientific papers that have debated concordance. We covered this paper (Seok et al. 2013) because we believe it exemplifies a pattern and not so much because it is new.

David Horrobin (2003) Modern biomedical research: an internally self-consistent universe with little contact with medical reality? Nat Rev Drug Discov. 2: 151-4.

P Pound, S Ebrahim, P Sandercock et al. (2004) Where is the evidence that animal research benefits humans? BMJ.  328: 514–517.

A good place to gain access to this literature is at http://www.afma-curedisease.org/

«‹ 7 8 9 10›
Jonathan Latham
Contact Jonathan Latham

Recent Posts

  • In Testimony, Robert Garry Declines To Rule Out That Researchers Brought Ebola To West Africa In 2014
  • The Future of the Lab Leak Theory
  • The Great Raccoon Dog Mystery
  • Did West Africa’s Ebola Outbreak of 2014 Have a Lab Origin?
  • Fauci’s COVID Origin SWAT Team Versus the Mojiang Miner Passage Theory

Categories

  • Book Reviews (6)
  • Feature Articles (43)
  • Forthcoming Appearances (2)
  • Interviews (2)
  • News Articles (28)
  • Online Presentations (7)
  • Uncategorized (4)
Robert Garry Testifying

In Testimony, Robert Garry Declines To Rule Out That Researchers Brought Ebola To West Africa In 2014

Screen Shot 2024-03-16 at 7.20.32 PM

The Future of the Lab Leak Theory

ECV2023

The Great Raccoon Dog Mystery

ebolaunicef

Did West Africa’s Ebola Outbreak of 2014 Have a Lab Origin?

Fauci’s COVID Origin SWAT Team Versus the Mojiang Miner Passage Theory

Jonathan Latham
© Jonathan Latham 2025
Powered by WordPress • Themify WordPress Themes

↑ Back to top